Skip to main content
Log in

Viscous and acoustic properties of AlCu melts

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The atomic dynamics of the binary Al100–x Cu x system is simulated at a temperature T = 973 K, a pressure p = 1.0 bar, and various copper concentrations x. These conditions (temperature, pressure) make it possible to cover the equilibrium liquid Al100–x Cu x phase at copper concentrations 0 ≤ x ≤ 40% and the supercooled melt in the concentration range 40% ≤ x ≤ 100%. The calculated spectral densities of the time correlation functions of the longitudinal \({\tilde C_L}\)(k, ω) and transverse \({\tilde C_T}\)(k, ω) currents in the Al100–x Cu x melt at a temperature T = 973 K reveal propagating collective excitations of longitudinal and transverse polarizations in a wide wavenumber range. It is shown that the maximum sound velocity in the v L (x) concentration dependence takes place for the equilibrium melt at an atomic copper concentration x = 10 ± 5%, whereas the supercooled Al100–x Cu x melt saturated with copper atoms (x ≥ 40%) is characterized by the minimum sound velocity. In the case of the supercooled melt, the concentration dependence of the kinematic viscosity ν(x) is found to be interpolated by a linear dependence, and a deviation from the linear dependence is observed in the case of equilibrium melt at x < 40%. An insignificant shoulder in the ν(x) dependence is observed at low copper concentrations (x < 20%), and it is supported by the experimental data. This shoulder is caused by the specific features in the concentration dependence of the density ρ(x).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. H. March, Liquid Metals: Concepts and Theory (Cambridge Univ. Press, Cambridge, 1990).

    Book  Google Scholar 

  2. R. Hultgren, Selected Values of the Thermodynamic Properties of Binary Alloys (Amer. Soc. Metals, Metals Park, Ohio, 1973).

    Google Scholar 

  3. A. T. Dinsdale and P. N. Quested, J. Mater. Sci. 39, 7221 (2004).

    Article  ADS  Google Scholar 

  4. The 140th Committee of Japan Society for Promotion of Science: Handbook of Physico-Chemical Properties at High Temperature, Ed. by Y. Kawai and Y. Shirai-shi (ISIJ, Tokyo, 1988).

    Google Scholar 

  5. R. M. Khusnutdinov and A. V. Mokshin, Bull. Russ. Acad. Sci.: Phys. 74, 640 (2010).

    Article  Google Scholar 

  6. Y. He, S. J. Poon, and G. J. Shiflet, Science 241, 1640 (1988).

    Article  ADS  Google Scholar 

  7. A. P. Tsai, A. Inoue, and T. Masumoto, J. Mater. Sci. Lett. 7, 805 (1988).

    Article  Google Scholar 

  8. V. V. Brazhkin, Phys. Usp. 49, 719 (2006).

    Article  ADS  Google Scholar 

  9. M. Sun and X. Bian, Mater. Lett. 56, 620 (2002).

    Article  Google Scholar 

  10. W. R. D. Jones and W. L. Bartlett, J. Inst. Metals 83, 59 (1954).

    Google Scholar 

  11. K. I. Eretnov and A. P. Lyubimov, Izv. Vyssh. Uchebn. Zaved., Tsvet. Metall. 1, 119 (1966).

    Google Scholar 

  12. M. Schick, J. Brillo, I. Egry, and B. Hallstedt, J. Mater. Sci. 47, 8145 (2012).

    Article  ADS  Google Scholar 

  13. N. Yu. Konstantinova, P. S. Popel’, and D. A. Yagodin, High Temp. 47, 336 (2009).

    Article  Google Scholar 

  14. A. V. Mokshin, A. V. Chvanova, and R. M. Khusnutdinov, Theor. Math. Phys. 171, 541 (2012).

    Article  Google Scholar 

  15. V. T. Witusiewicz, U. Hecht, S. G. Fries, and S. Rex, J. Alloys Comp. 385, 133 (2004).

    Google Scholar 

  16. C. W. Bale, P. Chartrand, S. A. Degterov, et al., CALPHAD 26, 189 (2002). http://www.crct.polymtl.ca/fact/download.php

    Article  Google Scholar 

  17. J. Cai and Y. Y. Ye, Phys. Rev. B 54, 8398 (1996).

    Article  ADS  Google Scholar 

  18. D. K. Belashchenko, Phys. Usp. 56, 1176 (2013).

    Article  ADS  Google Scholar 

  19. R. M. Khusnutdinoff, A. V. Mokshin, and I. I. Khadeev, J. Phys.: Conf. Ser. 394, 012012 (2012).

    ADS  Google Scholar 

  20. A. L. Bel’tyukov and V. I. Lad’yanov, Instrum. Exp. Tech. 51, 304 (2008).

    Article  Google Scholar 

  21. O. Yu. Goncharov, N. V. Olyanina, A. L. Bel’tyukov, and V. I. Lad’yanov, Russ. J. Phys. Chem. A 89, 857 (2015).

    Article  Google Scholar 

  22. E. G. Shvidkovskii, Some Questions of the Viscosity of Fused Metals (Gostekhizdat, Moscow, 1955) [in Russian].

    Google Scholar 

  23. A. L. Bel’tyukov, S. G. Men’shikova, and V. I. Lad’yanov, High Temp. 53, 491 (2015).

    Article  Google Scholar 

  24. R. M. Khusnutdinov, A. V. Mokshin, and I. I. Khadeev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 84 (2014).

    Article  Google Scholar 

  25. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, New York, 2006).

    MATH  Google Scholar 

  26. A. V. Mokshin, R. M. Yulmetyev, R. M. Khusnutdinov, and P. Hanggi, J. Exp. Theor. Phys. 103, 841 (2006).

    Article  ADS  Google Scholar 

  27. Y. Waseda, The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids (McGraw-Hill, New York, 1980).

    Google Scholar 

  28. T. M. Truskett, S. Torquato, and P. G. Debenedetti, Phys. Rev. E 62, 993 (2000).

    Article  ADS  Google Scholar 

  29. R. M. Khusnutdinov, A. V. Mokshin, and R. M. Yulmetyev, J. Exp. Theor. Phys. 108, 417 (2009).

    Article  ADS  Google Scholar 

  30. W. Montfrooij and I. de Schepper, Excitations in Simple Liquids, Liquid Metals and Superfluids (Oxford Univ. Press, New York, 2010).

    Google Scholar 

  31. R. M. Khusnutdinov and A. V. Mokshin, JETP Lett. 100, 39 (2014).

    Article  ADS  Google Scholar 

  32. R. M. Khusnutdinov, A. V. Mokshin, and I. D. Takhaviev, Phys. Solid State 57, 412 (2015).

    Article  ADS  Google Scholar 

  33. A. V. Mokshin, R. M. Khusnutdinov, A. G. Novikov, N. M. Blagoveshchenskii, and A. V. Puchkov, J. Exp. Theor. Phys. 121, 828 (2015).

    Article  ADS  Google Scholar 

  34. D. Pines, Elementary Excitations in Solids (W. A. Benjamin, New York, 1963).

    MATH  Google Scholar 

  35. U. Balucani and M. Zoppi, Dynamics of the Liquid State (Clarendon, Oxford, 1994).

    Google Scholar 

  36. A. V. Mokshin, R. M. Yulmetyev, R. M. Khusnutdinoff, and P. Hänggi, J. Phys.: Condens. Matter 19, 046209 (2007).

    ADS  Google Scholar 

  37. T. Gaskell, U. Balucani, M. Gori, and R. Vallauri, Phys. Scripta 35, 37 (1987).

    Article  ADS  Google Scholar 

  38. V. I. Lad’yanov, A. L. Bel’tyukov, S. G. Menshikova, and A. U. Korepanov, Phys. Chem. Liquids 52, 46 (2014).

    Article  Google Scholar 

  39. A. L. Bel’tyukov, S. G. Menshikova, and V. I. Lad’yanov, J. Non-Cryst. Solids 410, 1 (2015).

    Article  ADS  Google Scholar 

  40. W. E. Alley and B. J. Alder, Phys. Rev. A 27, 3158 (1983).

    Article  ADS  Google Scholar 

  41. J. Brillo, I. Egry, and J. Westphal, Int. J. Mater. Res. 99, 162 (2008).

    Article  Google Scholar 

  42. Y. Plevachuk, V. Sklyarchuk, A. Yakymovych, et al., Metal. Mater. Trans. A 39, 3040 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Khusnutdinoff.

Additional information

Original Russian Text © R.M. Khusnutdinoff, A.V. Mokshin, S.G. Menshikova, A.L. Beltyukov, V.I. Ladyanov, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 149, No. 5, pp. 994–1004.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khusnutdinoff, R.M., Mokshin, A.V., Menshikova, S.G. et al. Viscous and acoustic properties of AlCu melts. J. Exp. Theor. Phys. 122, 859–868 (2016). https://doi.org/10.1134/S1063776116040166

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116040166

Navigation