Skip to main content
Log in

Spin transport in epitaxial magnetic manganite/ruthenate heterostructures with an LaMnO3 layer

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 01 January 2015

Abstract

Epitaxial La0.7Sr0.3MnO3/LaMnO3/SrRuO3 (LSMO/LMO/SRO) heterostructures with an LMO layer 0–35 nm thick are grown by laser ablation on an NdGaO3 substrate at a high temperature. X-ray diffraction and transmission electron microscopy demonstrate sharp interfaces and epitaxial growth of the LSMO and SRO layers in the heterostructures at an LMO layer thickness of 0–35 nm. SQUID measurements of the magnetic moment of the heterostructures with an LMO layer and the data obtained with reflectometry of polarized neutrons show that the manganite LMO layer is a ferromagnet at a temperature below 150 K and strongly affects the magnetic moment of the heterostructures at low temperatures. The magnetoresistance of the mesostructure created from the heterostructure using lithography and ion etching decreases with increasing LMO layer thickness and weakly depends on the direction of an applied magnetic field. If the LMP layer is absent, a negative magnetoresistance is detected; it is likely to be caused by a negative magnetization of the SRO layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Zutic, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2006).

    Article  ADS  Google Scholar 

  2. M. Julliere, Phys. Lett. A 54, 225 (1975).

    Article  ADS  Google Scholar 

  3. J. C. Slonczewski, Phys. Rev. B: Condens. Matter 39, 6995 (1989).

    Article  ADS  Google Scholar 

  4. R. Gunnarsson, Z. G. Ivanov, C. Dobourdieu, and H. Russel, Phys. Rev. B: Condens. Matter 69, 054413 (2004).

    Article  ADS  Google Scholar 

  5. D. C. Worledge and T. H. Geballe, Phys. Rev. Lett. 85, 5182 (2000).

    Article  ADS  Google Scholar 

  6. K. S. Takahashi, A. Sawa, Y. Ishii, H. Akoh, M. Kawasaki, and Y. Tokura, Phys. Rev. B: Condens. Matter 67, 094413 (2003).

    Article  ADS  Google Scholar 

  7. J. Singh, J. Appl. Phys. 79, 4818 (1996).

    Article  ADS  Google Scholar 

  8. S. Yunoki, E. Dagotto, S. Costamagna, and J. A. Riera, Phys. Rev. B: Condens. Matter 78, 024405 (2008).

    Article  ADS  Google Scholar 

  9. V. V. Demidov, G. A. Ovsyannikov, A. M. Petrzhik, I. V. Borisenko, A. V. Shadrin, and R. Gunnarsson, J. Appl. Phys. 113, 163909 (2013).

    Article  ADS  Google Scholar 

  10. A. Kanbayasi, J. Phys. Soc. Jpn. 41, 1876 (1976).

    Article  ADS  Google Scholar 

  11. G. Koster, L. Klein, W. Siemons, G. Rijnders, J. S. Dodge, C.-B. Eom, D. H. A. Blank, and M. R. Beasley, Rev. Mod. Phys. 84, 253 (2012).

    Article  ADS  Google Scholar 

  12. Y. Moritomo, A. Asamitsu, and Y. Tokura, Phys. Rev. B: Condens. Matter 51, 16491 (1995).

    Article  ADS  Google Scholar 

  13. I. V. Borisenko, M. A. Karpov, and G. A. Ovsyannikov, Tech. Phys. Lett. 39(12), 1027 (2013).

    Article  ADS  Google Scholar 

  14. A. M. Petrzhik, G. A. Ovsyannikov, A. V. Shadrin, K. I. Konstantinyan, A. V. Zaitsev, V. V. Demidov, and Yu. V. Kislinskii, J. Exp. Theor. Phys. 112(6), 1042 (2011).

    Article  ADS  Google Scholar 

  15. A. Y. Borisevich, A. R. Lupini, J. He, E. A. Eliseev, A. N. Morozovska, G. S. Svechnikov, P. Yu, Y.-H. Chu, R. Ramesh, S. T. Pantelides, S. V. Kalinin, and S. J. Pennycook, Phys. Rev. B: Condens. Matter 86, 140102(R) (2012).

    Article  ADS  Google Scholar 

  16. M. Ziese, F. Bern, A. Setzer, E. Pippel, D. Hesse, and I. Vrejoiu, Eur. Phys. J. B 86, 42 (2013).

    Article  ADS  Google Scholar 

  17. X. Ke, L. J. Belenky, C. B. Eom, and M. S. Rzchowski, J. Appl. Phys. 97, 10K115 (2005).

    Article  Google Scholar 

  18. J. Daillant and A. Gibaud, X-Ray and Neutron Reflectivity Principles and Applications (Springer-Verlag, Berlin, 1999), ISSN 0940-7677.

    Google Scholar 

  19. X. Ke, L. J. Belenky, V. Lauter, H. Ambaye, C. W. Bark, C. B. Eom, and M. S. Rzchowski, Phys. Rev. Lett. 110, 237201 (2013).

    Article  ADS  Google Scholar 

  20. M. Ziese, I. Vrejoiu, E. Pippel, P. Esquinazi, D. Hesse, C. Etz, J. Henk, A. Ernst, I. V. Maznichenko, W. Hergert, and I. Mertig, Phys. Rev. Lett. 104, 167203 (2010).

    Article  ADS  Google Scholar 

  21. J.-H. Kim, I. Vrejoiu, Y. Khaydukov, T. Keller, J. Stahn, A. Rühm, D. K. Satapathy, V. Hinkov, and B. Keimer, Phys. Rev. B: Condens. Matter 86, 180402(R) (2012).

    Article  ADS  Google Scholar 

  22. G. A. Ovsyannikov, A. E. Sheierman, A. V. Shadrin, Yu. V. Kislinskii, K. I. Konstantinyan, and A. Kalabukhov, JETP Lett. 97(3), 145 (2013).

    Article  ADS  Google Scholar 

  23. A. M. Klushin, A. Golubov, W. Prusseit, and H. Kolstedt, J. Low. Temp. Phys. 106, 265 (1997).

    Article  ADS  Google Scholar 

  24. F. V. Komissinskii, G. A. Ovsyannikov, N. A. Tulina, and V. V. Ryazanov, J. Exp. Theor. Phys. 89(6), 1160 (1999).

    Article  ADS  Google Scholar 

  25. W. F. Brinkman, R. C. Dynes, and J. M. Rowell, J. Appl. Phys. 41, 1915 (1970).

    Article  ADS  Google Scholar 

  26. F. V. Komissinskii, G. A. Ovsyannikov, and Z. G. Ivanov, Phys. Solid State 43(5), 801 (2001).

    Article  ADS  Google Scholar 

  27. A. V. Zaitsev, Sov. Phys. JETP 59(5), 1015 (1984).

    Google Scholar 

  28. M. Paranjape, J. Mitra, A. K. Raychaudhuri, N. K. Todd, N. D. Mathur, and M. G. Blamire, Phys. Rev. B: Condens. Matter 68, 144409–1 (2003).

    Article  ADS  Google Scholar 

  29. A. M. Petrzhik, G. A. Ovsyannikov, V. V. Demidov, A. V. Shadrin, and I. V. Borisenko, Phys. Solid State 55(4), 759 (2013).

    Article  ADS  Google Scholar 

  30. F. Guinea, Phys. Rev. B: Condens. Matter 58, 9212 (1998).

    Article  ADS  Google Scholar 

  31. Yu. G. Naidyuk, O. P. Balkashin, V. V. Fisun, I. K. Yanson, A. Kadigrobov, R. I. Shekhter, M. Jonson, V. Neu, M. Seifert, S. Andersson, and V. Korenivski, New J. Phys. 14, 093021 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Petrzhik.

Additional information

Original Russian Text © A.M. Petrzhik, G.A. Ovsyannikov, A.V. Shadrin, Yu.N. Khaidukov, L. Mustafa, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 146, No. 4, pp. 844–853.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrzhik, A.M., Ovsyannikov, G.A., Shadrin, A.V. et al. Spin transport in epitaxial magnetic manganite/ruthenate heterostructures with an LaMnO3 layer. J. Exp. Theor. Phys. 119, 745–752 (2014). https://doi.org/10.1134/S1063776114100161

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114100161

Keywords

Navigation