Skip to main content
Log in

Lattice dynamics and phase diagram of aluminum at high temperatures

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dispersion of phonons in the fcc, hcp, and bcc phases of aluminum is calculated at ultrahigh pressures by the method of small displacements in a supercell. The stability of the phonon subsystem is studied. The thermodynamic characteristics are calculated in the quasi-harmonic approximation, and a phase diagram of aluminum is plotted. As compared to the Debye model, the use of a phonon spectrum calculated in the quasi-harmonic approximation significantly broadens the hcp phase field and strongly shifts the phase boundary between the fcc and bcc phases. The normal isentrope is calculated at megabar pressures. It is shown to intersect the fcc-hcp and hcp-bcc phase boundaries. The sound velocity along the normal isentrope is calculated. It is shown to have a nonmonotonic character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Zharkov and V. A. Kalinin, Equations of State for Solids at High Pressures and Temperatures (Nauka, Moscow, 1968; Consultants Bureau, New York, 1971).

    Google Scholar 

  2. V. E. Fortov, Phys.-Usp. 52(6), 615 (2009).

    Article  ADS  Google Scholar 

  3. V. Ya. Ternovoi, S. V. Kivitov, A. A. Pyalling A. S. Filimonov, and V. E. Fortov, JETP Lett. 79(1), 6 (2004).

    Article  ADS  Google Scholar 

  4. T. N. Kolobyanina, Phys.-Usp. 45(12), 1203 (2002).

    Article  ADS  Google Scholar 

  5. E. G. Maksimov, M. V. Magnitskaya, and V. E. Fortov, Phys.-Usp. 48(8), 761 (2005).

    Article  ADS  Google Scholar 

  6. J. Lv, Y. Wang, L. Zhu, and Y. Ma, Phys. Rev. Lett. 106, 015503 (2011).

    Article  ADS  Google Scholar 

  7. V. E. Fortov, A. M. Molodets, V. I. Postnov, D. V. Shakhrai, K. L. Kagan, E. G. Maksimov, A. V. Ivanov, and M. V. Magnitskaya, JETP Lett. 79(7), 346 (2004).

    Article  ADS  Google Scholar 

  8. M. I. Eremets, E. A. Gregoryanz, V. V. Struzhkin, H. Mao, R. J. Hemley, N. Mulders, and N. M. Zimmerman, Phys. Rev. Lett. 85, 2797 (2000).

    Article  ADS  Google Scholar 

  9. G. V. Boriskov, S. I. Belov, A. I. Bykov, M. I. Dolotenko, N. I. Egorov, A. S. Korshunov, Yu. B. Kudasov, I. V. Makarov, V. D. Selemir, and A. V. Filippov, J. Low Temp. Phys. 159, 307 (2010).

    Article  ADS  Google Scholar 

  10. Yu. B. Kudasov and A. S. Korshunov, JETP Lett. 79(1), 32 (2004).

    Article  ADS  Google Scholar 

  11. Y. Akahama, M. Nishimura, K. Kinoshita, H. Kawamura, and Y. Ohishi, Phys. Rev. Lett. 96, 045505 (2006).

    Article  ADS  Google Scholar 

  12. R. F. Trunin, Phys.-Usp. 37(11), 1123 (1994).

    Article  ADS  Google Scholar 

  13. A. I. Pavlovskii, A. I. Bykov, M. I. Dolotenko, A. A. Karpikov, N. P. Kolokolchikov, V. I. Mamyshev, and O. M. Tatsenko, in Megagauss Technology and Pulsed Power Applications, Ed. by C. M. Fowler, R. S. Caird, and D. J. Erickson (Plenum, New York, 1987), p. 243.

  14. K. T. Lorenz, M. J. Edwards, A. F. Jankowski, S.M. Pollaine, R. F. Smith, and B. A. Remington, High Energy Density Phys. 2, 113 (2006).

    Article  ADS  Google Scholar 

  15. G. V. Boriskov, A. I. Bykov, N. I. Egorov, M. I. Dolotenko, V. N. Pavlov, and V. I. Timareva, J. Phys.: Conf. Ser. 121 072001 (2008).

    Article  ADS  Google Scholar 

  16. G. V. Boriskov, S. I. Belov, A. I. Bykov, et al., Abstracts of Papers of the International Conference “The XIV Khariton’s Topical Scientific Readings: High-Power Pulsed Electrophysics,” Russian Federal Nuclear Center-All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF), Sarov, Nizhni Novgorod oblast, Russia, March 12–16, 2012 (RFNC-VNIIEF, Sarov, 2012), p. 99.

    Google Scholar 

  17. L. V. Al’tshuler, S. B. Kormer, A. A. Bakanov, and R. F. Trunin, Sov. Phys. JETP 11, 573 (1960).

    Google Scholar 

  18. R. G. Greene, H. Luo, and A. L. Ruoff, Phys. Rev. Lett. 73, 2035 (1994).

    Article  ADS  Google Scholar 

  19. J.-P. Devis, J. Appl. Phys. 99, 103512 (2006).

    Article  ADS  Google Scholar 

  20. M. H. G. Jacobs and R. Schmid-Fetzer, Phys. Chem. Miner. 37, 721 (2010).

    Article  ADS  Google Scholar 

  21. V. Mishra and S. Chaturvedi, Physica B (Amsterdam) 393, 278 (2007).

    Article  ADS  Google Scholar 

  22. C. J. Pickard and R. J. Needs, Nat. Mater. 9, 624 (2010).

    Article  ADS  Google Scholar 

  23. G. V. Sin’ko and N. A. Smirnov, J. Phys.: Condens. Matter 14, 6989 (2002).

    Article  ADS  Google Scholar 

  24. P. R. Levashov, G. V. Sin’ko, N. A. Smirnov, D. V. Minakov, O. P. Shemyakin, and K. V. Khishchenko, J. Phys.: Condens. Matter 22, 505501 (2010).

    Article  Google Scholar 

  25. S. A. Ostanin, E. I. Salamatov, and V. Yu. Trubitsin, Phys. Rev. B: Condens. Matter 57, 5002 (1998).

    Article  ADS  Google Scholar 

  26. G. V. Sin’ko and N. A. Smirnov, in Proceedings of the International Conference “The IX Khariton’s Topical Scientific Readings: Extreme States of Matter, Detonation, and Shock Waves,” Russian Federal Nuclear Center-All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF), Sarov, Nizhni Novgorod oblast, Russia, March 12–16, 2007 (RFNC-VNIIEF, Sarov, 2007), p. 287.

    Google Scholar 

  27. G. V. Sin’ko, Phys. Rev. B: Condens. Matter 77, 104118 (2008).

    Article  ADS  Google Scholar 

  28. X. Lu and S. V. Hanagud, AIP Conf. Proc. 845, 107 (2006).

    Article  ADS  Google Scholar 

  29. B. Grabowski, L. Ismer, T. Hickel, and J. Neugebauer, Phys. Rev. B: Condens. Matter 79, 134106 (2009).

    Article  ADS  Google Scholar 

  30. V. Vlcek, N. de Koker, and G. Steinle-Neumann, Phys. Rev. B: Condens. Matter 85, 184201 (2012).

    Article  ADS  Google Scholar 

  31. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Technische Universität, Vienna, Austria, 2001), ISBN 3-9501031-1-2 (WIEN).

    Google Scholar 

  32. G. K. H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, and L. Nordström, Phys. Rev. B: Condens. Matter 64, 195134 (2001).

    Article  ADS  Google Scholar 

  33. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  34. G. J. Ackland, M. C. Warreny, and S. J. Clark, J. Phys.: Condens. Matter 9, 7861 (1997).

    Article  ADS  Google Scholar 

  35. D. Alfe, G. D. Price, and M. J. Gillan, Phys. Rev. B: Condens. Matter 64, 045123 (2001).

    Article  ADS  Google Scholar 

  36. A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation (Academic, New York, 1963; Mir, Moscow, 1965).

    Google Scholar 

  37. D. V. Livanov, Physics of Metals: A Textbook for Universities, (Moscow Institute of Steel and Alloys, Moscow, 2006) [in Russian].

    Google Scholar 

  38. P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B: Condens. Matter 49, 16223 (1994).

    Article  ADS  Google Scholar 

  39. N. Ashcroft and N. Mermin, Solid State Physics (Holt, Rinehart, and Winston, New York, 1976; Mir, Moscow, 1979), Vols. 1, 2.

    Google Scholar 

  40. R. Stedman and G. Nilsson, Phys. Rev. 145, 492 (1966).

    Article  ADS  Google Scholar 

  41. P. M. Sutton, Phys. Rev. 91, 816 (1953).

    Article  ADS  Google Scholar 

  42. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1996).

    Google Scholar 

  43. J. C. Kotz, P. M. Treichel, and J. R. Townsend, Chemistry and Chemical Reactivity (Brooks Cole, Pacific Grove, California, United States, 2010).

    Google Scholar 

  44. M. J. Tambe, N. Bonini, and N. Marzar, Phys. Rev. B: Condens. Matter 77, 172102 (2008).

    Article  ADS  Google Scholar 

  45. M. Kresch, M. Lucas, O. Delaire, J. Y. Y. Lin, and B. Fultz, Phys. Rev. B: Condens. Matter 77, 024301 (2008).

    Article  ADS  Google Scholar 

  46. W. J. Nellis, A. C. Mitchell, and D. A. Young, J. Appl. Phys. 93, 304 (2003).

    Article  ADS  Google Scholar 

  47. M. Martinez-Canales and A. Bergara, J. Phys. Chem. Solids 69, 2151 (2009).

    Article  ADS  Google Scholar 

  48. S. V. Lepeshkin, M. V. Magnitskaya, and E. G. Maksimov, JETP Lett. 89(11), 586 (2009).

    Article  ADS  Google Scholar 

  49. R. Boehler and M. Ross, Earth Planet. Sci. Lett. 153, 223 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. B. Kudasov.

Additional information

Original Russian Text © Yu.B. Kudasov, O.M. Surdin, A.S. Korshunov, V.N. Pavlov, N.V. Frolova, R.S. Kuzin, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 144, No. 4, pp. 765–773.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudasov, Y.B., Surdin, O.M., Korshunov, A.S. et al. Lattice dynamics and phase diagram of aluminum at high temperatures. J. Exp. Theor. Phys. 117, 664–671 (2013). https://doi.org/10.1134/S1063776113100038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113100038

Keywords

Navigation