Skip to main content
Log in

High-frequency response and the possibilities of frequency-tunable narrow-band terahertz amplification in resonant tunneling nanostructures

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The characteristics of the high-frequency response of single- and double-well resonant tunneling structures in a dc electric field are investigated on the basis of the numerical solution of a time-dependent Schrödinger equation with open boundary conditions. The frequency dependence of the real part of high frequency conductivity (high-frequency response) in In0.53Ga0.47As/AlAs/InP structures is analyzed in detail for various values of the dc voltage V dc in the negative differential resistance (NDR) region. It is shown that double-well three-barrier structures are promising for the design of terahertz-band oscillators. The presence of two resonant states with close energies in such structures leads to a resonant (in frequency) response whose frequency is determined by the energy difference between these levels and can be controlled by varying the parameters of the structure. It is shown that, in principle, such structures admit narrow-band amplification, tuning of the amplification frequency, and a fine control of the amplification (oscillation) frequency in a wide range of terahertz frequencies by varying a dc electric voltage applied to the structure. Starting from a certain width of the central intermediate barrier in double-well structures, one can observe a collapse of resonances, where the structure behaves like a single-well system. This phenomenon imposes a lower limit on the oscillation frequency in three-barrier resonant tunneling structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, C. D. Parker, and D. D. Peck, Appl. Phys. Lett. 43, 588 (1983).

    Article  ADS  Google Scholar 

  2. E. R. Brown, J. R. Söderström, C. D. Parker, L. J. Mahoney, K. M. Molvar, and T. C. McGill, Appl. Phys. Lett. 58, 2291 (1991).

    Article  ADS  Google Scholar 

  3. N. Orihashi, S. Suzuki, and M. Asada, Appl. Phys. Lett. 87, 233501 (2005).

    Article  ADS  Google Scholar 

  4. S. Suzuki, A. Teranishi, K. Hinata, M. Asada, H. Sugiyama, and H. Yokoyama, Appl. Phys. Express 2, 054501 (2009).

    Article  ADS  Google Scholar 

  5. S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, Appl. Phys. Lett. 97, 242102 (2010).

    Article  ADS  Google Scholar 

  6. R. Sekiguchi, Y. Koyama, and T. Ouchi, Appl. Phys. Lett. 96, 062115 (2010).

    Article  ADS  Google Scholar 

  7. M. Feiginov, C. Sydlo, O. Cojocari, and P. Meissner, Appl. Phys. Lett. 99, 233506 (2011).

    Article  ADS  Google Scholar 

  8. A. A. Gorbatsevich and V. M. Koltyzhenkov, in Proceedings of the International Workshop on Physics and Computer Modeling of Devices Based on Low-Dimensional Structures, Aizu-Wakamatsu, Japan, November 7–9, 1995 (IEEE Computer Society Press, Los Alamitos, California, United States, 1996), p. 68.

    Book  Google Scholar 

  9. A. Gorbatsevich, I. Kazakov, B. Nalbandov, S. Shmelev, and A. Tsibizov, in Proceedings of International Conference “Micro- and Nanoelectronics 2003” (ICMNE-2003), Zvenigorod, Moscow oblast, October 1–5, 2003 (Zvenigorod, 2003), p. 63.

    Google Scholar 

  10. M. Reddy, S. C. Martin, A. C. Molnar, R. E. Muller, R. P. Smith, P. H. Siegel, M. J. Mondry, M. J. W. Rodwell, H. Kroemer, and S. J. Allen, Jr., IEEE Electron Device Lett. 18, 218 (1997).

    Article  ADS  Google Scholar 

  11. Haitao Qi, Weilian Guo, Yali Li, Xiongwen Zhang, and Xiaobai Li, Trans. Tianjin Univ. 16, 267 (2010).

    Article  Google Scholar 

  12. V. N. Murzin and Yu. V. Kopaev, in Proceedings of the GDRI-CNRS Workshop “Semiconductors Sourses and Detectors of THz Radiation,” Tignes, France, March 29–April 1, 2011 (Tignes, 2011), p. 5.

    Google Scholar 

  13. V. F. Elesin, JETP 89(2), 377 (1999).

    Article  ADS  Google Scholar 

  14. V. F. Elesin, JETP 94(4), 794 (2002).

    Article  ADS  Google Scholar 

  15. V. F. Elesin, JETP 97(2), 343 (2003).

    Article  ADS  Google Scholar 

  16. V. A. Chuenkov, Kratk. Soobshch. Fiz., No. 10, 21 (2008).

    Google Scholar 

  17. V. F. Elesin, JETP 100(1), 116 (2005).

    Article  ADS  Google Scholar 

  18. S. A. Savinov and V. N. Murzin, JETP Lett. 93(3), 155 (2011).

    Article  ADS  Google Scholar 

  19. R. K. Mains and G. I. Haddad, J. Appl. Phys. 67, 591 (1990).

    Article  ADS  Google Scholar 

  20. J. R. Hellums and W. R. Frensley, Phys. Rev. B: Condens. Matter 49, 2904 (1994).

    Article  ADS  Google Scholar 

  21. W. Li and L. E. Reichl, Phys. Rev. B: Condens. Matter 60, 15732 (1999).

    Article  ADS  Google Scholar 

  22. W. Li and L. E. Reichl, Phys. Rev. B: Condens. Matter 62, 8269 (2000).

    Article  ADS  Google Scholar 

  23. G. Murillo, P. A. Schulz, and J. C. Arce, Appl. Phys. Lett. 98, 102108 (2011).

    Article  ADS  Google Scholar 

  24. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1972; Dover, New York, 1990).

    Google Scholar 

  25. A. A. Gorbatsevich, M. N. Zhuravlev, and V. V. Kapaev, JETP 107(2), 288 (2008).

    Article  ADS  Google Scholar 

  26. A. A. Gorbatsevich, M. N. Zhuravlev, and V. V. Kapaev, Izv. Vyssh. Uchebn. Zaved., Elektron., No. 2, 3 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kapaev.

Additional information

Original Russian Text © V.V. Kapaev, Yu.V. Kopaev, S.A. Savinov, V.N. Murzin, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 143, No. 3, pp. 569–589.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapaev, V.V., Kopaev, Y.V., Savinov, S.A. et al. High-frequency response and the possibilities of frequency-tunable narrow-band terahertz amplification in resonant tunneling nanostructures. J. Exp. Theor. Phys. 116, 497–515 (2013). https://doi.org/10.1134/S1063776113030096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113030096

Keywords

Navigation