Skip to main content
Log in

Correlation properties of entangled multiphoton states and Bernstein’s paradox

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A normally ordered characteristic function (NOCF) of Bose operators is calculated for a number of discrete-variable entangled states (Greenberger-Horne-Zeilinger (GHZ) and Werner (W) qubit states and a cluster state). It is shown that such NOCFs contain visual information on two types of correlations: pseudoclassical and quantum correlations. The latter manifest themselves in the interference terms of the NOCFs and lead to quantum paradoxes, whereas the pseudoclassical correlations of photons and their cumulants satisfy the relations for classical random variables. Three- and four-qubit states are analyzed in detail. An implementation of an analog of Bernstein’s paradox on discrete quantum variables is discussed. A measure of quantumness of an entangled state is introduced that is not related to the entropy approach. It is established that the maximum of the degree of quantumness substantiates the numerical values of the coefficients in multiqubit vector states derived from intuitive considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. V. Belinskii and D. N. Klyshko, Phys.—Usp. 36(8), 653 (1993).

    Article  ADS  Google Scholar 

  2. G. S. Greenstein and A. G. Zajonc, The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics (Jones and Bartlett, London, 2005; Intellekt, Moscow, 2008).

    Google Scholar 

  3. J. Preskill, Quantum Information and Computation (California Institute of Technology, Pasadena, California, United States, 1998; Institute of Computer Science, Moscow, 2008).

    Google Scholar 

  4. Quantum Imaging, Ed. by M. I. Kolobov (Springer-Verlag, Berlin, 2006; Fizmatlit, Moscow, 2009).

    Google Scholar 

  5. Quantum Information with Continuous Variables of Atoms and Light, Ed. by N. J. Cerf, G. Leuchs, and E. S. Polzik (Imperial College Press, London, 2007).

    MATH  Google Scholar 

  6. H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2010).

    MATH  Google Scholar 

  7. A. Furusawa and P. van Loock, Quantum Teleportation and Entanglement (Wiley, Weinheim, Germany, 2011).

    Book  Google Scholar 

  8. L. Henderson and V. Verdral, J. Phys. A: Math. Gen. 34, 6899 (2001).

    Article  ADS  MATH  Google Scholar 

  9. H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2002).

    Article  ADS  Google Scholar 

  10. V. Verdral, Phys. Rev. Lett. 90, 050401 (2003).

    Article  ADS  Google Scholar 

  11. C. Yu and H. Song, Phys. Rev. A: At., Mol., Opt. Phys. 73, 022325 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  12. D. L. Zhou, B. Zeng, Z. Xu, and L. You, Phys. Rev. A: At., Mol., Opt. Phys. 74, 052110 (2006).

    Article  ADS  Google Scholar 

  13. D. Kaszlikowski, A. Sen(De), U. Sen, V. Vedral, and A. Winter, Phys. Rev. Lett. 101, 070502 (2008).

    Article  ADS  Google Scholar 

  14. A. Streltsov, H. Kampermann, and D. Bruss, Phys. Rev. Lett. 107, 170502 (2011).

    Article  ADS  Google Scholar 

  15. K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, arXiv:quant-ph1112.6238v1.

  16. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weifurter, A. Zeilinger, and M. Zukovski, Rev. Mod. Phys. 84, 777 (2012).

    Article  ADS  Google Scholar 

  17. A. V. Belinskii and D. N. Klyshko, JETP 75(4), 606 (1994).

    Google Scholar 

  18. V. P. Karassiov, JETP Lett. 84(12), 640 (2006).

    Article  ADS  Google Scholar 

  19. V. P. Karassiov and S. P. Kulik, JETP 104(1), 30 (2007).

    Article  ADS  Google Scholar 

  20. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 2008).

    Book  MATH  Google Scholar 

  21. V. N. Gorbachev, S. P. Kulik, and A. I. Trubilko, JETP 107(3), 384 (2008).

    Article  ADS  Google Scholar 

  22. A. N. Malakhov, Cumulant Analysis of Random Non-Gaussian Processes and Their Transformations (Sovetskoe Radio, Moscow, 1978) [in Russian].

    Google Scholar 

  23. S. A. Akhmanov, Yu. E. D’yakov, and A. S. Chirkin, Statistical Radiophysics and Optics: Random Vibrations and Waves in Linear Systems (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  24. J. Stoyanov, Counterexamples in Probability (Wiley, New York, 1997; Faktorial, Moscow, 1999).

    MATH  Google Scholar 

  25. I. S. Zhukova, G. A. Malinovskaya, and A. I. Saichev, Modern Methods of Analysis of Random Processes and Fields (Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia, 2006) [in Russian].

    Google Scholar 

  26. A. V. Belinskii, JETP Lett. 54(1), 11 (1991).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Chirkin.

Additional information

Original Russian Text © A.S. Chirkin, O.V. Belyaeva, A.V. Belinsky, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 143, No. 1, pp. 48–57.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirkin, A.S., Belyaeva, O.V. & Belinsky, A.V. Correlation properties of entangled multiphoton states and Bernstein’s paradox. J. Exp. Theor. Phys. 116, 39–47 (2013). https://doi.org/10.1134/S1063776113010202

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113010202

Keywords

Navigation