Skip to main content
Log in

Distortions of the coulomb blockade conductance line in scanning gate measurements of inas nanowire based quantum dots

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We performed measurements at helium temperatures of the electronic transport in the linear regime in an InAs quantum wire in the presence of a charged tip of an atomic force microscope (AFM) at low electron concentration. We show that at certain concentration of electrons, only two closely placed quantum dots, both in the Coulomb blockade regime, govern conductance of the whole wire. Under this condition, two types of peculiarities—wobbling and splitting—arise in the behavior of the lines of the conductance peaks of Coulomb blockade. These peculiarities are measured in quantum-wire-based structures for the first time. We explain both peculiarities as an interplay of the conductance of two quantum dots present in the wire. Detailed modeling of wobbling behavior made in the framework of the orthodox theory of Coulomb blockade demonstrates good agreement with the obtained experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Topinka, B. J. LeRoy, S. E. J. Shaw, E. J. Heller, R. M. Westervelt, K. D. Maranowski, and A. C. Gossard, Science (Washington) 289, 2323 (2000).

    Article  ADS  Google Scholar 

  2. M. A. Topinka, B. J. LeRoy, R. M. Westervelt, S. E. J. Shaw, R. Fleischmann, E. J. Heller, K. D. Maranowski, and A. C. Gossard, Nature (London) 410, 183 (2001).

    Article  ADS  Google Scholar 

  3. S. Schnez, C. Rösssler, T. Ihn, K. Ensslin, C. Reichl, and W. Wegscheider, Phys. Rev. B: Condens. Matter 84, 195322 (2011).

    Article  ADS  Google Scholar 

  4. B. Hackens, F. Martins, T. Ouisse, H. Sellier, S. Bollaert, X. Wallart, A. Cappy, J. Chevrier, V. Bayot, and S. Huant, Nat. Phys. 2, 826 (2006).

    Article  Google Scholar 

  5. A. Pioda, S. Kicin, T. Ihn, M. Sigrist, A. Fuhrer, K. Ensslin, A. Weichselbaum, S. E. Ulloa, M. Reinwald, and W. Wegscheider, Phys. Rev. Lett. 93, 216801 (2004).

    Article  ADS  Google Scholar 

  6. A. E. Gildemeister, T. Ihn, M. Sigrist, K. Ensslin, D. C. Driscoll, and A. C. Gossard, Phys. Rev. B: Condens. Matter 75, 195338 (2007).

    Article  ADS  Google Scholar 

  7. M. Huefner, B. Kueng, S. Schnez, K. Ensslin, T. Ihn, M. Reinwald, and M. Reinwald, Phys. Rev. B: Condens. Matter 83, 235326 (2011).

    Article  ADS  Google Scholar 

  8. S. Schnez, J. Güttinger, M. Huefner, Ch. Stampfer, K. Ensslin, and Th. Ihn, Phys. Rev. B: Condens. Matter 82, 165445 (2010).

    Article  ADS  Google Scholar 

  9. S. Schnez, J. Güttinger, M. Huefner, Ch. Stampfer, K. Ensslin, and Th. Ihn, arXiv:1005.2024.

  10. M. Bockrat, W. Liang, D. Bozovic, J. H. Hafner, Ch.M. Lieber, M. Tinkham, and H. Park, Science (Washington) 291, 283 (2001).

    Article  ADS  Google Scholar 

  11. M. T. Woodside and P. L. McEuen, Science (Washington) 296, 1098 (2002).

    Article  ADS  Google Scholar 

  12. A. A. Zhukov and G. Finkelstein, JETP Lett. 89 (4), 236 (2009).

  13. A. C. Bleszynski, F. A. Zwanenburg, R. M. Westervelt, A. L. Roest, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Nano Lett. 7, 2559 (2005).

    Article  ADS  Google Scholar 

  14. A. A. Zhukov, Ch. Volk, A. Winden, H. Hardtdegen, and Th. Schäpers, JETP Lett. 93 (1), 13 (2011).

  15. S. Schnez, J. Güttinger, C. Stampfer, K. Ensslin, and T. Ihn, New J. Phys. 13, 053013 (2011).

    Article  ADS  Google Scholar 

  16. M. Akabori, K. Sladek, H. Hardtdegen, Th. Schäpers, and D. Grützmacher, J. Cryst. Growth 311, 3813 (2009).

    Article  ADS  Google Scholar 

  17. A. A. Zhukov, Instrum. Exp. Tech. 51 (1), 130 (2008).

  18. I. M. Ruzin, V. Chandrasekhar, E. I. Levin, and L. I. Glazman, Phys. Rev. B: Condens. Matter 45, 13469 (1992).

    Article  ADS  Google Scholar 

  19. F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Campman, and A. C. Gossard, Phys. Rev. Lett. 75, 705 (1995).

    Article  ADS  Google Scholar 

  20. W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, and L. P. Kouwenhoven, Rev. Mod. Phys. 75, 1 (2003).

    Article  Google Scholar 

  21. Yu. V. Nazarov, Physica B (Amsterdam) 189, 57 (1993).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zhukov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhukov, A.A., Volk, C., Winden, A. et al. Distortions of the coulomb blockade conductance line in scanning gate measurements of inas nanowire based quantum dots. J. Exp. Theor. Phys. 116, 138–144 (2013). https://doi.org/10.1134/S1063776112130195

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112130195

Keywords

Navigation