Skip to main content
Log in

Resonant magnetoresistance in the vicinity of a phase transition

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The change in the electrical conductivity of manganite films upon microwave pumping in the magnetic resonance conditions is investigated. The temperature dependence of the effect correlates with the temperature variation of colossal magnetoresistance (CMR), passing through a maximum at the Curie point. The results are interpreted using a model that assumes a decrease in the absolute value |M| of the magnetic moment of the sample under the action of magnetoresonant saturation, which leads to an increase in resistance in accordance with the CMR mechanism. Theoretical analysis based on the Landau-Lifshitz-Bloch equation confirms the correctness of this model and ensures good agreement with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. J. Juretschke, J. Appl. Phys. 31, 1401 (1960).

    Article  ADS  Google Scholar 

  2. W. G. Egan and H. J. Juretschke, J. Appl. Phys. 34, 1477 (1963).

    Article  ADS  Google Scholar 

  3. Y. S. Gui, N. Mecking, A. Wirthmann, L. H. Bai, and C.-M. Hu, Appl. Phys. Lett. 91, 082503 (2007).

    Article  ADS  Google Scholar 

  4. S. T. B. Goennenwein, S. W. Schink, A. Brandlmaier, A. Boger, M. Opel, R. Gross, R. S. Keizer, T. M. Klapwijk, A. Gupta, H. Huebl, C. Bihler, and M. S. Brandt, Appl. Phys. Lett. 90, 162507 (2007).

    Article  ADS  Google Scholar 

  5. N. Mecking, Y. S. Gui, and C.-M. Hu, Phys. Rev. B: Condens. Matter 76, 224430 (2007).

    Article  ADS  Google Scholar 

  6. Y. S. Gui, N. Mecking, X. Zhou, G. Williams, and C.-M. Hu, Phys. Rev. Lett. 98, 107602 (2007).

    Article  ADS  Google Scholar 

  7. X. Hui, A. Wirthmann, Y. S. Gui, Y. Tian, X. F. Jin, Z. H. Chen, S. C. Shen, and C.-M. Hu, Appl. Phys. Lett. 93, 232502 (2008).

    Article  ADS  Google Scholar 

  8. Y. S. Gui, A. Wirthmann, and C.-M. Hu, Phys. Rev. B: Condens. Matter 80, 184422 (2009).

    Article  ADS  Google Scholar 

  9. R. Laiho, E. Lähderanta, L. S. Vlasenko, M. P. Vlasenko, and V. S. Zakhvalinskii, Phys. Solid State 43(3), 489 (2001).

    Article  ADS  Google Scholar 

  10. V. A. Atsarkin, V. V. Demidov, L. V. Levkin, and A. M. Petrzhik, Phys. Rev. B: Condens. Matter 82, 144414 (2010).

    Article  ADS  Google Scholar 

  11. D. A. Garanin, Phys. Rev. B: Condens. Matter 55, 3050 (1997).

    Article  ADS  Google Scholar 

  12. O. Chubykalo-Fesenko, U. Nowak, R. W. Chantrell, and D. Garanin, Phys. Rev. B: Condens. Matter 74, 094436 (2006).

    Article  ADS  Google Scholar 

  13. C. Zener, Phys. Rev. 81, 440 (1951); C. Zener, Phys. Rev. 82, 403 (1951).

    Article  ADS  MATH  Google Scholar 

  14. P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).

    Article  ADS  Google Scholar 

  15. S. V. Trukhanov, A. V. Trukhanov, A. N. Vasiliev, A. M. Balagurov, and H. Szymczak, JETP 113(5), 819 (2011).

    Article  ADS  Google Scholar 

  16. J. M. D. Coey, M. Viret, and S. von Molnár, Adv. Phys. 48, 167 (1999).

    Article  ADS  Google Scholar 

  17. M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).

    Article  ADS  Google Scholar 

  18. E. L. Nagaev, Phys. Rep. 346, 387 (2001).

    Article  ADS  Google Scholar 

  19. L. I. Koroleva, Magnetic Semiconductors (Faculty of Physics, Moscow State University, Moscow, 2003) [in Russian].

    Google Scholar 

  20. A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961; Inostrannaya Literatura, Moscow, 1963).

    Google Scholar 

  21. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (Nauka, Moscow, 1994; CRC Press, Boca Raton, Florida, United States, 1996), Chaps. 1, 2.

    Google Scholar 

  22. G. V. Skrotskii and Yu. I. Alimov, Sov. Phys. JETP 8, 1035 (1958).

    Google Scholar 

  23. G. A. Ovsyannikov, A. M. Petrzhik, I. V. Borisenko, A. A. Klimov, Yu. A. Ignatov, V. V. Demidov, and S. A. Nikitov, JETP 108(1), 48 (2009).

    Article  ADS  Google Scholar 

  24. V. V. Demidov, I. V. Borisenko, A. A. Klimov, G. A. Ovsyannikov, A. M. Petrzhik, and S. A. Nikitov, JETP 112(5), 825 (2011).

    Article  ADS  Google Scholar 

  25. V. A. Atsarkin, V. V. Demidov, G. A. Vasneva, and K. Conder, Phys. Rev. B: Condens. Matter 63, 092405 (2001).

    Article  ADS  Google Scholar 

  26. V. A. Atsarkin, V. V. Demidov, G. A. Vasneva, and D. G. Gotovtsev, Appl. Magn. Reson. 21, 147 (2001).

    Article  Google Scholar 

  27. V. A. Atsarkin, V. V. Demidov, F. Simon, R. Gaal, Y. Moritomo, K. Conder, A. Jánossy, and L. Forró, J. Magn. Magn. Mater. 258–259, 256 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Atsarkin.

Additional information

Original Russian Text © V.A. Atsarkin, V.V. Demidov, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 143, No. 1, pp. 109–115.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atsarkin, V.A., Demidov, V.V. Resonant magnetoresistance in the vicinity of a phase transition. J. Exp. Theor. Phys. 116, 95–100 (2013). https://doi.org/10.1134/S1063776112130122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112130122

Keywords

Navigation