Skip to main content
Log in

On the ability of resonant diffraction gratings to differentiate a pulsed optical signal

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The passage of an optical pulse through a resonant grating is considered. The conditions under which the resonant grating differentiates the envelope of the incident pulse are determined. It is shown that the necessary condition for computing the k-order derivative is the presence of k resonances in the transmission spectrum of the grating in the vicinity of the central frequency of the incident pulse. A method is described for constructing the stacked structure for computing the kth derivative on the basis of repetition of the structure for computing the first derivative. The results of numerical simulation of diffraction of the pulse from the analyzed structure for computing the first, second, and third derivative are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Kulishov and J. Azaña, Opt. Express 15, 6152 (2007).

    Article  ADS  Google Scholar 

  2. R. Slavík, Y. Park, M. Kulishov, R. Morandotti, and J. Azaña, Opt. Express 14, 10699 (2006).

    Article  ADS  Google Scholar 

  3. M. Kulishov and J. Azaña, Opt. Lett. 30, 2700 (2005).

    Article  ADS  Google Scholar 

  4. R. Slavík, Y. Park, M. Kulishov, and J. Azaña, Opt. Lett. 34, 3116 (2009).

    Article  Google Scholar 

  5. L. M. Rivas, S. Boudreau, Y. Park, R. Slavík, S. LaRochelle, A. Carballar, and J. Azaña, J. Opt. Lett. 34, 1792 (2009).

    Article  ADS  Google Scholar 

  6. N. K. Berger, B. Levit, B. Fischer, M. Kulishov, D. V. Plant, and J. Azaña, Opt. Express 15, 371 (2007).

    Article  ADS  Google Scholar 

  7. M. Li, D. Janner, J. Yao, and V. Pruneri, Opt. Express 17, 19798 (2009).

    Article  ADS  Google Scholar 

  8. M. A. Preciado and M. A. Muriel, Opt. Lett. 33, 2458 (2008).

    Article  ADS  Google Scholar 

  9. H. Li, T. Kumagai, K. Ogusu, and Y. Sheng, J. Opt. Soc. Am. B 21, 1929 (2004).

    Article  ADS  Google Scholar 

  10. R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).

    Article  ADS  Google Scholar 

  11. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, Phys. Rev. B: Condens. Matter 66, 045102 (2002).

    Article  ADS  Google Scholar 

  12. N. A. Gippius, S. G. Tikhodeev, and T. Ishihara, Phys. Rev. B: Condens. Matter 72, 045138 (2005).

    Article  ADS  Google Scholar 

  13. D. A. Bykov, L. L. Doskolovich, V. A. Soifer, and N. L. Kazanskiy, JETP 111(6), 967 (2010).

    Article  ADS  Google Scholar 

  14. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, Phys. Rev. B: Condens. Matter 67, 085415 (2003).

    Article  ADS  Google Scholar 

  15. N. A. Gippius, T. Weiss, S. G. Tikhodeev, and H. Giessen, Opt. Express 18, 7569 (2010).

    Article  Google Scholar 

  16. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, London, 1959; Nauka, Moscow, 1973).

    MATH  Google Scholar 

  17. V. Lomakin and E. Michielssen, IEEE Trans. Antennas Propag. 54, 970 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  18. R. Magnusson, D. Shin, and Z. S. Liu, Opt. Lett. 23, 612 (1998).

    Article  ADS  Google Scholar 

  19. T. Tamir and S. Zhang, J. Opt. Soc. Am. A 14, 1607 (1997).

    Article  ADS  Google Scholar 

  20. T. Sun, J. Ma, J. Wang, Y. Jin, H. He, J. Shao, and Z. Fan, J. Opt. A: Pure Appl. Opt. 10, 125003 (2008).

    Article  ADS  Google Scholar 

  21. J.-F. Bonnans, J.-C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal, Numerical Optimization, Theoretical and Numerical Aspects (Springer, New York, 2003).

    MATH  Google Scholar 

  22. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995).

    Article  ADS  Google Scholar 

  23. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1077 (1995).

    Article  ADS  Google Scholar 

  24. L. Li, J. Opt. Soc. Am. A 13, 1870 (1996).

    Article  ADS  Google Scholar 

  25. W. Nakagawa, R.-C. Tyan, P.-C. Sun, F. Xu, and Y. Fainman, J. Opt. Soc. Am. A 18, 1072 (2001).

    Article  ADS  Google Scholar 

  26. N. V. Smirnov and I. V. Dunin-Barkovskii, Course of the Probability Theory and Mathematical Statistics for Engineering Applications (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Bykov.

Additional information

Original Russian Text © D.A. Bykov, L.L. Doskolovich, V.A. Soifer, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 141, No. 5, pp. 832–839.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bykov, D.A., Doskolovich, L.L. & Soifer, V.A. On the ability of resonant diffraction gratings to differentiate a pulsed optical signal. J. Exp. Theor. Phys. 114, 724–730 (2012). https://doi.org/10.1134/S1063776112030028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112030028

Keywords

Navigation