Skip to main content
Log in

Ab initio calculations of the physical properties of transition metal carbides and nitrides and possible routes to high-T c superconductivity

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We report ab initio linear-response calculations of the phonon spectra and the electron-phonon interaction for several transition metal carbides and nitrides in a NaCl-type structure. For NbC, the kinetic, optical, and superconducting properties are calculated in detail at various pressures and the normal-pressure results are found to agree well with the experiment. Factors accounting for the relatively low critical temperatures T c in transition metal compounds with light elements are considered and the possible ways of increasing T c are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Problems in High-Temperature Superconductivity, Ed. by V. L. Ginzburg and D. A. Kirzhnits (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  2. L. E. Toth, The Transition Metal Carbides and Nitrides (Academic, New York, 1971).

    Google Scholar 

  3. W. E. Picket, B. M. Klein, and D. A. Papaconstantopoulos, Physica (Amsterdam) 108, 667 (1981); D. A. Papaconstantopoulos, W. E. Picket, B. M. Klein, et al., Nature 308, 494 (1984).

    Google Scholar 

  4. B. M. Klein and D. A. Papaconstantopoulos, Phys. Rev. Lett. 32, 1193 (1974).

    Article  ADS  Google Scholar 

  5. Y. Zhoa and S. He, Solid State Commun. 45, 281 (1983).

    Article  Google Scholar 

  6. G. Linker, R. Smithey, and O. Meyer, J. Phys.: Met. Phys. 14, L115 (1984).

    Article  ADS  Google Scholar 

  7. K. Inumaru, K. Baba, and S. Yamanaka, Phys. Rev. B 73, 052504 (2006).

    Google Scholar 

  8. E. G. Maksimov and Yu. A. Shilov, Usp. Fiz. Nauk 169, 1223 (1999) [Phys. Usp. 42, 1121 (1999)].

    Google Scholar 

  9. E. G. Maksimov and D. Yu. Savrasov, Solid State Commun. 119, 569 (2001).

    Article  ADS  Google Scholar 

  10. E. G. Maksimov and O. A. Pankratov, Usp. Fiz. Nauk 116, 385 (1975) [Sov. Phys. Usp. 18, 481 (1975)].

    Google Scholar 

  11. N. W. Ashcroft, Phys. Rev. Lett. 92, 187002 (2004).

    Google Scholar 

  12. J. Nagamatsu, N. Nagakawa, N. Muranaka, et al., Nature 410, 63 (2001).

    Article  ADS  Google Scholar 

  13. S. Y. Savrasov, Phys. Rev. B 54, 16 470 (1996).

    Google Scholar 

  14. S. Y. Savrasov and D. Y. Savrasov, Phys. Rev. B 46, 12 181 (1992).

    Google Scholar 

  15. E. G. Maksimov, M. V. Magnitskaya, S. V. Ebert, and S. Yu. Savrasov, Pis’ma Zh. Éksp. Teor. Fiz. 80, 623 (2004) [JETP Lett. 80, 548 (2004)].

    Google Scholar 

  16. E. I. Isaev, A. Ahuja, S. I. Simak, et al., Phys. Rev. B 72, 0645515 (2005).

  17. R. Bauer, A. Y. Liu, and D. Strauch, Physica B (Amsterdam) 263–264, 452 (1999).

    Google Scholar 

  18. S. Yu. Savrasov and E. G. Maksimov, Usp. Fiz. Nauk 165, 773 (1995) [Phys. Usp. 38, 737 (1995)].

    Google Scholar 

  19. E. G. Maksimov, D. Yu. Savrasov, and S. Yu. Savrasov, Usp. Fiz. Nauk 167, 353 (1997) [Phys. Usp. 40, 337 (1997)].

    Google Scholar 

  20. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  21. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  22. E. G. Maksimov, Usp. Fiz. Nauk 170, 1033 (2000) [Phys. Usp. 43, 965 (2000)].

    Article  Google Scholar 

  23. U. von Bart and L. Hedin, J. Phys. C 5, 1629 (1972).

    Article  ADS  Google Scholar 

  24. P. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, 16 223 (1994).

    Google Scholar 

  25. H. G. Smith and W. Gläser, in Proceedings of the International Conference on Phonons, Ed. by M. A. Nusimovici (Flammarion, Paris, 1971).

    Google Scholar 

  26. C. Y. Allison, F. A. Modine, and R. N. French, Phys. Rev. B 35, 2573 (1987).

    Article  ADS  Google Scholar 

  27. P. Blaha, K. Schwarz, G. K. H. Madsen, et al., WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Ed. by Karlheinz Schwarz (Tech. Univ. Wien, Vienna, 1999).

    Google Scholar 

  28. G. M. Eliashberg, Zh. Éksp. Teor. Fiz. 39, 1437 (1961) [Sov. Phys. JETP 12, 1000 (1961)].

    Google Scholar 

  29. X.-J. Chen, V. V. Struzhkin, S. Kung, et al., Phys. Rev. B 70, 014501 (2004).

  30. G. L. W. Hart and B. M. Klein, Phys. Rev. B 61, 3151 (2000).

    Article  ADS  Google Scholar 

  31. J. Chen, L. L. Boyer, H. Krakauer, and M. J. Mehl, Phys. Rev. B 37, 3295 (1988).

    Article  ADS  Google Scholar 

  32. J. J. Hopfield, Phys. Rev. B 86, 443 (1969).

    Google Scholar 

  33. P. B. Allen, in Dynamical Properties of Solids, Ed. by G. K. Horton and A. A. Maraudin (North-Holland, Amsterdam, 1980), Vol. 3, Chap. 2.

    Google Scholar 

  34. J. M. An and W. E. Pickett, Phys. Rev. Lett. 86, 4366 (2001).

    Article  ADS  Google Scholar 

  35. K.-W. Lee and W. E. Pickett, Phys. Rev. Lett. 93 237003 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Maksimov.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksimov, E.G., Ebert, S.V., Magnitskaya, M.V. et al. Ab initio calculations of the physical properties of transition metal carbides and nitrides and possible routes to high-T c superconductivity. J. Exp. Theor. Phys. 105, 642–651 (2007). https://doi.org/10.1134/S1063776107090221

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107090221

PACS numbers

Navigation