Skip to main content
Log in

Charge screening in a plasma with an external ionization source

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An asymptotic theory for the screening of the electric field of a dust particle or a spherical probe in a plasma with an external steady and/or internal (proportional to the electron density) gas ionization source has been developed for the first time. It has been established that the screening of the charge of a spherical body adsorbing the charge of the incident plasma particles is described by a superposition of two exponentials with different screening constants. The two exponentials are retained even in the absence of nonequilibrium fluxes on the macroparticle and only in the special case of an isothermal plasma does the screening become Debye one. The screening length is determined by the ratio of the electron-ion, βei, and Langevin, βL = 4πeμi (where μi is the ion mobility), recombination coefficients. If βL ≫ βei, then it is much larger than the electron Debye length. The ions in an isothermal plasma have been found to give the same contribution to the screening as the electrons if the electron-ion recombination coefficient exceeds the Langevin ion recombination coefficient by a factor of 2 or more, βei ≥ 2βL. The Vlasov equation is used to analyze the asymptotic behavior of the macroparticle potential in a collisionless plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Tsytovich, Usp. Fiz. Nauk 167, 57 (1997) [Phys. Usp. 40, 53 (1997)].

    Article  Google Scholar 

  2. P. M. Shukla, Phys. Plasmas 8, 1791 (2001).

    Article  ADS  Google Scholar 

  3. A. Piel and A. Melzer, Plasma Phys. Controlled Fusion 44, R1 (2002).

    Article  ADS  Google Scholar 

  4. Ch. Hollenstein, Plasma Phys. Controlled Fusion 42, R93 (2000).

    Article  ADS  Google Scholar 

  5. V. E. Fortov, A. G. Khrapak, S. A. Khrapak, et al., Usp. Fiz. Nauk 174, 495 (2004) [Phys. Usp. 47, 447 (2004)].

    Google Scholar 

  6. Yu. P. Raĭzer, The Physics of Gas Discharge (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  7. O. V. Kozlov, Electrical Probe in Plasma (Atomizdat, Moscow, 1969) [in Russian].

    Google Scholar 

  8. P. M. Chung, L. Talbot, and K. J. Touryan, Electric Probes in Stationary and Flowing Plasmas (Springer, New York, 1975; Mir, Moscow, 1978).

    Google Scholar 

  9. B. V. Alekseev and V. A. Kotel’nikov, Probe Method of Plasma Diagnostics (Énergoatomizdat, Moscow, 1988) [in Russian].

    Google Scholar 

  10. M. S. Benilov, in Diagnostics of Low-Temperature Plasma, Ed. by M. F. Zhukov and A. A. Ovsyannikov (Nauka, Novosibirsk, 1994), p. 214 [in Russian].

    Google Scholar 

  11. A. V. Filippov, A. G. Zagorodniĭ, A. F. Pal’, and A. N. Starostin, Pis’ma Zh. Éksp. Teor. Fiz. 81, 180 (2005) [JETP Lett. 81, 146 (2005)].

    Google Scholar 

  12. A. V. Filippov, N. A. Dyatko, A. F. Pal’, and A. N. Starostin, Fiz. Plazmy (Moscow) 29, 214 (2003) [Plasma Phys. Rep. 29, 190 (2003)].

    Google Scholar 

  13. V. E. Fortov, A. P. Nefedov, O. F. Petrov, et al., Phys. Rev. E 54, R2236 (1996).

    Article  ADS  Google Scholar 

  14. G. J. M. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005).

    Article  ADS  Google Scholar 

  15. A. F. Pal’, D. V. Sivokhin, A. N. Starostin, et al., Fiz. Plazmy (Moscow) 28, 32 (2002) [Plasma Phys. Rep. 28, 28 (2002)].

    Google Scholar 

  16. O. Bystrenko and A. Zagorodny, Phys. Rev. E 67, 066403 (2003).

    Google Scholar 

  17. A. G. Leonov, A. F. Pal’, A. N. Starostin, and A. V. Filippov, Pis’ma Zh. Éksp. Teor. Fiz. 77, 577 (2003) [JETP Lett. 77, 482 (2003)].

    Google Scholar 

  18. A. G. Leonov, A. F. Pal’, A. N. Starostin, and A. V. Filippov, Zh. Éksp. Teor. Fiz. 126, 75 (2004) [JETP 99, 61 (2004)].

    Google Scholar 

  19. A. A. Vlasov, Usp. Fiz. Nauk 93, 444 (1967) [Sov. Phys. Usp. 10, 721 (1968)].

    Google Scholar 

  20. E. M. Lifshitz and L. P. Pitaevskiĭ, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).

    Google Scholar 

  21. M. S. Barnes, J. H. Keller, J. C. Forster, et al., Phys. Rev. Lett. 68, 313 (1992).

    Article  ADS  Google Scholar 

  22. V. N. Tsytovich, Yu. K. Khodataev, and R. Bingham, Comments Plasma Phys. Control. Fusion 17, 249 (1996).

    Google Scholar 

  23. K. Tachibana, Phys. Rev. A 34, 1007 (1986).

    Article  ADS  Google Scholar 

  24. B. M. Smirnov, Complex Ions (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  25. B. M. Smirnov, Ions and Excited Atoms in Plasma (Atomizdat, Moscow, 1974) [in Russian].

    Google Scholar 

  26. V. A. Ivanov, Usp. Fiz. Nauk 162, 35 (1992) [Sov. Phys. Usp. 35, 17 (1992)].

    Google Scholar 

  27. A. V. Filippov, V. N. Babichev, N. A. Dyatko, et al., Zh. Éksp. Teor. Fiz. 129, 386 (2006) [JETP 102, 342 (2006)].

    Google Scholar 

  28. V. Yu. Baranov, A. F. Pal’, A. A. Pustovalov, et al., in Isotopes: Properties, Production, Application, Ed. by V. Yu. Baranov (Fizmatlit, Moscow, 2005), Vol. 2, p. 259 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Filippov, A.G. Zagorodny, A.I. Momot, A.F. Pal, A.N. Starostin, 2007, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 131, No. 1, pp. 164–179.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippov, A.V., Zagorodny, A.G., Momot, A.I. et al. Charge screening in a plasma with an external ionization source. J. Exp. Theor. Phys. 104, 147–161 (2007). https://doi.org/10.1134/S1063776107010153

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107010153

PACS numbers

Navigation