Skip to main content
Log in

Resonant diffraction of synchrotron radiation: New possibilities

  • Diffraction and Scattering of Ionizing Radiations
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Resonant diffraction of synchrotron radiation (SR) is a modern method of studying the structure and properties of condensed matter that can be implemented on third-generation synchrotrons. This method allows one to investigate local properties of media (including magnetic and electronic ones) and observe thermal vibrations, defects, and orbital and charge orderings. A brief review of the advance provided by SR resonant diffraction is presented, and the capabilities of this method for analyzing phase transitions are considered in more detail by the example of potassium dihydrogen phosphate and rubidium dihydrogen phosphate crystals. It is shown that the investigation of the temperature dependence of forbidden reflections not only makes it possible to observe the transition from para- to ferroelectric phase, but also gives information about the proton distribution at hydrogen bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Dmitrienko and E. N. Ovchinnikova, Kristallografiya 48 (6), S59 (2003).

    Google Scholar 

  2. S. W. Lovesey, E. Balcar, K. Knight, and J. Fernández–Rodríguez, Phys. Rep. 411, 233 (2005).

    Article  ADS  Google Scholar 

  3. S. W. Lovesey and S. P. Collins, X-Ray Scattering and Absorption by Magnetic Materials (Clarendon, Oxford, 1996).

    Google Scholar 

  4. M. Blume, Magnetic Effects in Anomalous Dispersion: in Resonant Anomalous X-Ray Scattering (Elsevier, New York, 1991), p.495.

    Google Scholar 

  5. Magnetism: A Synchrotron Radiation Approach, Ed. by E. Beaurepaire (Springer, 2006).

  6. F. de Bergevin and M. Brunel, Acta Crystallogr. A 37, 314 (1981)

    Article  ADS  Google Scholar 

  7. F. de Bergevin and M. Brunel, Acta Crystallogr. A 37, 324 (1981).

    Article  ADS  Google Scholar 

  8. D. Gibbs, D. Moncton, and K. d’Amico, J. Appl. Phys. 57, 3619 (1985).

    Article  ADS  Google Scholar 

  9. K. Namikawa, M. Ando, T. Nakajima, and H. Kawata, J. Phys. Soc. Jpn. 54, 4099 (1985).

    Article  ADS  Google Scholar 

  10. V. E. Dmitrienko, K. Ishida, A. Kirfel, and E. N. Ovchinnikova, Acta Crystallogr. A 61, 481 (2005).

    Article  ADS  Google Scholar 

  11. J.-L. Hodeau, V. Favre-Nicolin, S. Bos, et al., Chem. Rev. 101, 1843 (2001).

    Article  Google Scholar 

  12. V. A. Belyakov and V. E. Dmitrienko, Usp. Fiz. Nauk 158, 679 (1989).

    Article  Google Scholar 

  13. V. E. Dmitrienko, Acta Crystallogr. A 39, 29 (1983).

    Article  Google Scholar 

  14. D. Templeton and L. Templeton, Acta Crystallogr. A 41, 133 (1985).

    Article  Google Scholar 

  15. D. H. Templeton and L. K. Templeton, Phys. Rev. B 49, 14850 (1994).

    Article  ADS  Google Scholar 

  16. P. Carra and B. Thole, Rev. Mod. Phys. 66, 1509 (1994).

    Article  ADS  Google Scholar 

  17. K. D. Finkelstein, Q. Shen, and S. Shastri, Phys. Rev. Lett. 69, 1612 (1992).

    Article  ADS  Google Scholar 

  18. V. E. Dmitrienko and E. N. Ovchinnikova, Acta Crystallogr. A 57, 642 (2001).

    Article  Google Scholar 

  19. S. Di Matteo, Y. Joly, A. Bombardi, et al., Phys. Rev. Lett. 91, 257402 (2003).

    Article  ADS  Google Scholar 

  20. Y. Murakami, H. Kawada, H. Kawata, et al., Phys. Rev. Lett. 80, 1932 (1998).

    Article  ADS  Google Scholar 

  21. N. Binggeli and M. Altarelli, Phys. Rev. B 70, 085117 (2004).

    Article  ADS  Google Scholar 

  22. V. Dmitrienko, E. Ovchinnikova, and K. Ishida, Pis’ma Zh. Eksp. Teor. Fiz. 69, 885 (1999).

    Google Scholar 

  23. V. E. Dmitrienko and E. N. Ovchinnikova, Acta Crystallogr. A 56, 40 (2000).

    Article  Google Scholar 

  24. V. E. Dmitrienko and E. N. Ovchinnikova, Acta Crystallogr. A 56, 2 (2000).

    Article  Google Scholar 

  25. J. Kokubun, M. Kanazawa, K. Ishida, and V. E. Dmitrienko, Phys. Rev. B 64, 073203 (2001).

    Article  ADS  Google Scholar 

  26. A. Kirfel, J. Grybos, and V. E. Dmitrienko, Phys. Rev. B 66, 165202 (2002).

    Article  ADS  Google Scholar 

  27. S. P. Collins, D. Laundy, V. E. Dmitrienko, et al., Phys. Rev. B 68, 064110 (2003).

    Article  ADS  Google Scholar 

  28. G. Beutier, S. P. Collins, G. Nisbet, et al., Eur. Phys. J.: Spec. Top. 208, 53 (2012).

    Google Scholar 

  29. V. E. Dmitrienko, E. N. Ovchinnikova, S. P. Collins, et al., Nature Nature Phys. 10, 202 (2014).

    Article  ADS  Google Scholar 

  30. E. Kh. Mukhamedzhanov, M. V. Koval’chuk, M. M. Borisov, et al., Kristallografiya 55 (1), 187 (2010).

    Google Scholar 

  31. G. Beutier, S. P. Collins, E. N. Ovchinnikova, et al., J. Phys.: Conf. Ser. 519, 012006 (2014).

    ADS  Google Scholar 

  32. C. Richter, D. V. Novikov, E. K. Mukhamedzhanov, et al., Phys. Rev. B 89, 094110 (2014).

    Article  ADS  Google Scholar 

  33. G. Beutier, S. P. Collins, G. Nisbet, et al., Phys. Rev. B 92, 214116 (2015).

    Article  ADS  Google Scholar 

  34. F. Jona and G. Shirane, Ferroelectric Crystals (Dover, New York, 1993).

    Google Scholar 

  35. M. Lines and A. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, Oxford, 2001).

    Book  Google Scholar 

  36. J. C. Slater, J. Chem. Phys. 9, 16 (1941).

    Article  ADS  Google Scholar 

  37. Y. Takagi, J. Phys. Soc. Jpn. 3, 271 (1948).

    Article  ADS  Google Scholar 

  38. M. E. Senko, Phys. Rev. 121, 1599 (1961).

    Article  ADS  Google Scholar 

  39. R. J. Nelmes, W. F. Kuhs, C. J. Howard, et al., J. Phys. C 18, L711 (1985).

    Article  ADS  Google Scholar 

  40. R. Blinc, J. Phys. Chem. Solids V 13, 204 (1960).

    Article  ADS  Google Scholar 

  41. H. Schmidt, Ferroelectrics 72, 157 (1987).

    Article  Google Scholar 

  42. M. Tokunaga and T. Matsubara, Ferrolectrics 72, 175 (1987).

    Article  Google Scholar 

  43. H. Sugimoto and S. Ikeda, J. Phys.: Condens. Matter 8, 03 (1996).

    Google Scholar 

  44. R. J. Nelmes, J. Phys. C 21, L881 (1988).

    Article  ADS  Google Scholar 

  45. A. Bussmann-Holder and K. H. Michel, Phys. Rev. Lett. 80, 2173 (1998).

    Article  ADS  Google Scholar 

  46. S. Koval, J. Kohanoff, R. L. Migoni, and E. Tosatti, Phys. Rev. Lett. 89, 187602 (2002).

    Article  ADS  Google Scholar 

  47. S. Koval, J. Kohanoff, J. Lasave, et al., Phys. Rev. B 71, 184102 (2005).

    Article  ADS  Google Scholar 

  48. J. Lasave, S. Koval, N. S. Dalal, and R. Migoni, Phys. Rev. B 72, 104104 (2005).

    Article  ADS  Google Scholar 

  49. G. F. Reiter, J. Mayers, and P. Platzman, Phys. Rev. Lett. 89, 135505 (2002).

    Article  ADS  Google Scholar 

  50. A. R. Al-Karaghouli, B. Abdul-Wahab, E. Ajaj, and A. Sequeira, Acta Crystallogr. B 34, 1040 (1978).

    Article  Google Scholar 

  51. N. Kennedy and R. Nelmes, J. Phys. C 13, 4841 (1980).

    Article  ADS  Google Scholar 

  52. M. Ichikawa, K. Motida, and N. Yamada, Phys. Rev. B 36, 874 (1987).

    Article  ADS  Google Scholar 

  53. R. J. Nelmes, G. M. Meyer, and J. E. Tibballs, J. Phys. C 15, 59 (1982).

    Article  ADS  Google Scholar 

  54. International Tables for Crystallography, Ed. by T. Hahn (Springer, 2005), Vol. A.

  55. Yu. I. Sirotin and M. P. Shaskolskaya, Fundamentals of Crystal Physics (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  56. E. N. Ovchinnikova, V. E. Dmitrienko, A. P. Oreshko, et al., J. Phys.: Condens. Matter 22, 355404 (2010).

    Google Scholar 

  57. E. N. Ovchinnikova, V. E. Dmitrienko, K. Ishida, et al., Nucl. Instrum. Methods Phys. Res. A 543, 122 (2005).

    Article  ADS  Google Scholar 

  58. A. P. Oreshko, E. N. Ovchinnikova, G. Beutier, et al., J. Phys.: Condens. Matter 24, 245403 (2012).

    ADS  Google Scholar 

  59. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  60. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  61. O. Bunau and Y. Joly, J. Phys.: Condens. Matter 21, 345501 (2009).

    Google Scholar 

  62. www.neel.cnrs.fr/fdmnes.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Ovchinnikova.

Additional information

Original Russian Text © E.N. Ovchinnikova, E.Kh. Mukhamedzhanov, 2016, published in Kristallografiya, 2016, Vol. 61, No. 5, pp. 745–756.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchinnikova, E.N., Mukhamedzhanov, E.K. Resonant diffraction of synchrotron radiation: New possibilities. Crystallogr. Rep. 61, 768–778 (2016). https://doi.org/10.1134/S1063774516050175

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774516050175

Navigation