Skip to main content
Log in

Assembly models for zeolite crystal structures according to the data of topological analysis by the tiling method

  • Theory of Crystal Structures
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Cluster analysis of 194 tetrahedral T structures of zeolites has been performed by the tiling method using the TOPOS program package. An algorithm of the complete expansion of T structures in tiles (complementarily bound polyhedral clusters, which are responsible for the normal (face-to-face) partition of crystal space) and an algorithm for selecting nonintersecting tiles were used. Primary tiles, which number no more than two for any zeolite studied and have packing that completely determines the topology of the entire zeolite structure, have been determined for 41 zeolites. It is established that 24 zeolites are characterized by a single assembly version, 15 have two alternative versions, and IWR and TSC zeolites are characterized by 3 and 4 assembly versions. Isolated zeolites contain 2–11 topologically different T n tiles, where n is the number of tetrahedral T sites per tile; n = 4–168 and the diameter is 6–35 Å. The most numerous group of zeolites is characterized by n values of 4–18. This group contains no tiles with the odd values n = 7–17 and even value n = 6. The other group includes zeolites with large n values: 24, 30, 32, 36, 42, 48, 64, 72, 96, and 168.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Shubnikov, Selected Works on Crystallography (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  2. M. O’Keeffe and V. G. Hyde, Prot. Trans. R. Soc. Math. Phys. Sci. 295, 553 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  3. A. F. Wells, Structural Inorganic Chemistry (Clarendon, Oxford, 1975), p. 1.

    Google Scholar 

  4. G. D. Ilyushin and L. N. Dem’yanets, Model of Matrix Assembly of Crystal Structures. Crystallization Physics (Fizmatlit, Moscow, 2002), p. 82 [in Russian].

    Google Scholar 

  5. G. D. Ilyushin, Modeling of Self-Organization Processes in Crystal-Forming Systems (URSS, Moscow, 2003) [in Russian].

    Google Scholar 

  6. G. D. Ilyushin, Crystallogr. Rep. 49(7), S5 (2004).

    Google Scholar 

  7. W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys (Wiley, New York, 1972; Mir, Moscow, 1977).

    Google Scholar 

  8. G. D. Ilyushin and V. A. Blatov, Crystallogr. Rep. 54, 548 (2009).

    Article  ADS  Google Scholar 

  9. G. D. Ilyushin and V. A. Blatov, Acta Crystallogr. B 65, 300 (2009).

    Article  Google Scholar 

  10. S. Han and J. V. Smith, Acta Crystallogr. A 55, 332 (1999).

    Article  Google Scholar 

  11. C. Barlocher, W. M. Meier, and D. H. Olson, Atlas of Zeolite Framework Types (Elsevier, London, 2001).

    Google Scholar 

  12. N. A. Anurova, V. A. Blatov, G. D. Ilyushin, and D. M. Proserpio, J. Phys. Chem. C 114, 10160 (2010).

    Article  Google Scholar 

  13. V. A. Blatov and G. D. Ilyushin, Kristallografiya 56(2), (2011).

  14. V. A. Blatov, G. D. Ilyushin, and D. M. Proserpio, Inorg. Chem. 49, 1811 (2010).

    Article  Google Scholar 

  15. V. A. Blatov, IUCr CompComm Newsl. 7, 4 (2006).

    Google Scholar 

  16. V. A. Blatov, O. Delgado-Friedrichs, M. O’Keeffe, and D. M. Proserpio, Acta Crystallogr. A 63, 418 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  17. Yu. F. Shepelev, I. K. Butikova, Yu. I. Smolin, and V. I. Tarasov, Dokl. Akad. Nauk SSSR, 263, 1133 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Ilyushin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilyushin, G.D., Blatov, V.A. Assembly models for zeolite crystal structures according to the data of topological analysis by the tiling method. Crystallogr. Rep. 57, 875–884 (2012). https://doi.org/10.1134/S1063774512070085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774512070085

Keywords

Navigation