Skip to main content
Log in

Helical twisting in nemato-cholesteric systems based on cholesterol derivatives and photosensitive azoxy compounds

  • Liquid Crystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

For cholesteric liquid crystal systems containing photosensitive nematic ZhK-440 and a mixture of cholesterol derivatives, changes in helical twisting induced by UV radiation were studied. The UV-induced shift of selective reflection maximum λmax was shown to depend upon concentration of the nematic component. For low concentrations of ZhK-440, λmax increases, which correlates with corresponding changes with increasing temperature. For higher concentrations, λmax decreases, regardless of the temperature behavior of the system. A theoretical description of the available experimental data is proposed on the basis of development of molecular models of helical twisting, including an assumed possibility of ordered orientation of short molecular axes of cis-isomers formed as a result of UV irradiation, which is determined by the sense of the cholesteric helix already present in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Il’chishin, E. Tikhonov, V. Tishchenko, and M. Shpak, Pis’ma Zh. Eksp. Teor. Fiz. 32, 27 (1980).

    Google Scholar 

  2. V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, Progr. Quantum Electron. 27(6), 369 (2003).

    Article  ADS  Google Scholar 

  3. G. Chilaya, A. Chanishvili, G. Petriashvili, et al., Mater. Sci. Appl. 2(2), 116 (2011).

    Google Scholar 

  4. I. Ilchishin, O. Yaroshchuk, S. Gryshchenko, and E. Shaydiuk, Proc. SPIE 5507, 229 (2004).

    Article  ADS  Google Scholar 

  5. G. S. Chilaya, Crystallogr. Rep. 51(Suppl.), S108 (2006).

    Article  ADS  Google Scholar 

  6. Y. Huang, Y. Zhou, Ch. Doyle, and S. Wu, Opt. Exp. 14(3), 1236 (2006).

    Article  ADS  Google Scholar 

  7. I. P. Ilchishin, L. N. Lisetski, and T. V. Mykytiuk, Opt. Mater. Exp. 1(8), 1484 (2011).

    Article  Google Scholar 

  8. B. Kang, H. Choi, M.-Y. Jeong, and J. W. Wu, J. Opt. Soc. Am. B 27, 204 (2010).

    Article  Google Scholar 

  9. A. Chanishvili, G. Chilaya, G. Petriashvili, and D. Sikharulidze, Mol. Cryst. Liq. Cryst. 409, 209 (2004).

    Article  Google Scholar 

  10. A. Chanishvili, G. Chilaya, and G. Petriashvili, Mol. Cryst. Liq. Cryst. 434, 25 (2005).

    Article  Google Scholar 

  11. G. Chilaya, A. Chanishvili, G. Petriashvili, et al., Mol. Cryst. Liq. Cryst. 453, 123 (2006).

    Article  Google Scholar 

  12. D. Aronzon, E. P. Levy, P. J. Collings, et al., Liq. Cryst. 34(6), 707 (2007).

    Article  Google Scholar 

  13. M. Serbina, L. Lisetski, I. Gvozdovskyy, et al., Funct. Mater. 17(4), 449 (2010).

    Google Scholar 

  14. E. Sackman, J. Am. Chem. Soc. 93, 7088 (1971).

    Article  Google Scholar 

  15. Ch. Ruslim and K. Ichimura, J. Phys. Chem. B 104, 6529 (2000).

    Article  Google Scholar 

  16. J. Liu, P. Yang, Y. Wang, and Ch. Wang, Liq. Cryst. 33(3), 237 (2006).

    Article  Google Scholar 

  17. T. Yoshioka, Z. Alam, T. Ogata, et al., Liq. Cryst. 31(9), 1285 (2004).

    Article  Google Scholar 

  18. J. Liu, P. Yang, Y. Wang, and Ch. Wang, Liq. Cryst. 33(3), 237 (2006).

    Article  Google Scholar 

  19. T. Yoshioka, T. Ogata, Z. Alam, et al., Liq. Cryst. 31(1), 15 (2004).

    Article  Google Scholar 

  20. Ch. Ruslim, M. Nakagawa, S. Morino, and K. Ichimura, Mol. Cryst. Liq. Cryst. 365, 55 (2001).

    Article  Google Scholar 

  21. Ch. Ruslim and K. Ichimura, J. Phys. Chem. B 104, 6529 (2000).

    Article  Google Scholar 

  22. V. A. Hrozhuk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, Adv. Funct. Mater. 17, 1735 (2007).

    Article  Google Scholar 

  23. J. Adams and W. Haas, J. Electrochem. Soc. 118(12), 2026 (1971).

    Article  Google Scholar 

  24. G. S. Chilaya and L. N. Lisetski, Mol. Cryst. Liq. Cryst. 140(2/4), 243 (1986).

    Article  Google Scholar 

  25. L. N. Lisetski and T. P. Antonyan, Zh. Fiz. Khim. 54(5), 1169 (1980).

    Google Scholar 

  26. L. N. Lisetski, V. D. Panikarskaya, N. A. Kasyan, et al., Proc. SPIE 6023, 60230F (2005).

    Article  Google Scholar 

  27. G. Chilaya and L. Lisetskii, Usp. Fiz. Nauk 34(2), 279 (1981).

    Article  Google Scholar 

  28. J. Thisayukta, H. Niwano, H. Takezoe, et al., J. Am. Chem. Soc. 124, 3354 (2002).

    Article  Google Scholar 

  29. A. A. Gerasimov and S. V. Shiyanovskii, Ukr. Fiz. Zh. 34(10), 1527 (1989).

    Google Scholar 

  30. Ya. B. Zel’dovich, Sov. Phys. JETP 40(12), 1170 (1974).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Lisetski.

Additional information

Original Russian Text © M.I. Serbina, N.A. Kasian, L.N. Lisetski, 2013, published in Kristallografiya, 2013, Vol. 58, No. 1, pp. 140–145.

The article is translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serbina, M.I., Kasian, N.A. & Lisetski, L.N. Helical twisting in nemato-cholesteric systems based on cholesterol derivatives and photosensitive azoxy compounds. Crystallogr. Rep. 58, 155–159 (2013). https://doi.org/10.1134/S1063774512060119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774512060119

Keywords

Navigation