Skip to main content
Log in

Star formation and galactic dynamo model with helicity fluxes

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We propose a possible scenario of large-scale magnetic field evolution for galaxies with star formation. An important point affecting the results of our calculations is a parametrization of dynamo-governing quantities. In comparison with previous works, we have reconsidered the views of how star formation affects the stationary magnetic field strength, viscosity, and other parameters important for galactic dynamos. The calculations have been performed by taking into account the magnetic helicity fluxes, which introduce an additional nonlinearity into the model and change the regime of galactic dynamo action. We have confirmed the previously suggested idea that for weak star formation its influence on the magnetic field strength is minor and the relationship between them clearly manifests itself only when the star formation rate reaches a certain threshold value. In this case, on the one hand, the threshold lowers-this effect manifests itself at a star formation surface density greater than that in the Milky Way by a factor of 5. On the other hand, intense star formation can cause both a monotonic decay of the large-scale magnetic field and its oscillations near some value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. V. Abramova and A. V. Zasov, Astron. Rep. 55, 202 (2011).

    Article  ADS  Google Scholar 

  2. P. M. Akhmet’ev, O. V. Kunakovskaya, and V. A. Kutvitskii, Theor. Math. Phys. 158, 125 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  3. T. Arshakian, R. Beck, M. Krause, and D. Sokoloff, Astron. Astrophys. 494, 21 (2009).

    Article  ADS  Google Scholar 

  4. R. Beck, Space Sci. Rev. 99, 243 (2001).

    Article  ADS  Google Scholar 

  5. R. Beck and P. Hoernes, Nature 379, 47 (1996).

    Article  ADS  Google Scholar 

  6. R. Beck, A. Brandenburg, D. Moss, et al., Ann. Rev. Astron. Astrophys. 34, 155 (1996).

    Article  ADS  Google Scholar 

  7. A. Caldu-Primo, A. Schruba, F. Walter, et al., Astron. J. 146, 14 (2013).

    Article  Google Scholar 

  8. J. Irwin, R. Beck, R. A. Benjamin, et al., Astron. J. 144, 43 (2012).

    Article  ADS  Google Scholar 

  9. E. A. Mikhailov, Astron. Lett. 39, 414 (2013).

    Article  ADS  Google Scholar 

  10. E. A. Mikhailov, D. D. Sokoloff, Yu. N. Efremov, et al., Astron. Lett. 38, 543 (2012).

    Article  ADS  Google Scholar 

  11. H. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge Univ., London, New York, 1978; Mir, Moscow, 1980).

    Google Scholar 

  12. C. A. Molchanov, A. A. Ruzmaikin, D. D. Sokoloff, et al., Sov. Phys. Usp. 28, 307 (1985).

    Article  ADS  Google Scholar 

  13. D. Moss, Mon. Not. R. Astron. Soc. 275, 191 (1995).

    ADS  Google Scholar 

  14. A. Phillips, Geophys. Astrophys. Fluid Dynam. 94, 135 (2001).

    Article  ADS  Google Scholar 

  15. J. Rossa and R. -J. Dettmar, Astron. Astrophys. 406, 493 (2003).

    Article  ADS  Google Scholar 

  16. M. Schmidt, Astrophys. J. 129, 243 (1959).

    Article  ADS  Google Scholar 

  17. A. Shukurov, D. Sokoloff, K. Subramanian, and A. Brandenburg, Astron. Astrophys. 448, L33 (2006).

    Article  ADS  Google Scholar 

  18. A. Subramanian and K. Brandenburg, Astrophys. J. Lett. 648, L71 (2006).

    Article  ADS  Google Scholar 

  19. A. Subramanian and L. Mestel, Mon. Not. R. Astron. Soc. 265, 649 (1993).

    ADS  Google Scholar 

  20. S. Sur, A. Shukurov, and K. Subramanian, Mon. Not. R. Astron. Soc. 377, 874 (2007).

    Article  ADS  Google Scholar 

  21. A. V. Zasov and O. V. Abramova, Astron. Astrophys. Trans. 2, 351 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Mikhailov.

Additional information

Original Russian Text © E.A. Mikhailov, 2014, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2014, Vol. 40, No. 7, pp. 445–453.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, E.A. Star formation and galactic dynamo model with helicity fluxes. Astron. Lett. 40, 398–405 (2014). https://doi.org/10.1134/S1063773714070056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773714070056

Keywords

Navigation