Skip to main content
Log in

Influence of departures from LTE on oxygen abundance determination in the atmospheres of A-K stars

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We have performed non-LTE calculations for O I with a multilevel model atom using currently available atomic data for a set of parameters corresponding to stars of spectral types from A to K. Departures from LTE lead to a strengthening of O I lines, and the difference between the non-LTE and LTE abundances (non-LTE correction) is negative. The non-LTE correction does not exceed 0.05 dex in absolute value for visible O I lines for main-sequence stars in the entire temperature range. For the infrared O I 7771 Å line, the non-LTE correction can reach −1.9 dex. The departures from LTE are enhanced with increasing temperature and decreasing surface gravity. We have derived the oxygen abundance for three A-type mainsequence stars with reliably determined parameters (Vega, Sirius, HD 32115). For each of the stars, allowance for the departures from LTE leads to a decrease in the difference between the abundances from infrared and visible lines, for example, for Vega from 1.17 dex in LTE to 0.14 dex when abandoning LTE. In the case of Procyon and the Sun, inelastic collisions with HI affect the statistical equilibrium of OI, and agreement between the abundances from different lines is achieved when using Drawin’s classical formalism. Based on the O I 6300, 6158, 7771-5, and 8446 Å lines of the solar spectrum, we have derived the mean oxygen abundance log ɛ = 8.74 ± 0.05 using a classical plane-parallel model solar atmosphere and log ɛ +3D = 8.78 ± 0.03 by applying the 3D corrections taken from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Abia and R. Rebolo, Astrophys. J. 347, 186 (1989).

    Article  ADS  Google Scholar 

  2. C. Allende Prieto, M. Asplund, and P. Fabiani Bendicho, Astron. Astrophys. 423, 1109 (2004)

    Article  ADS  Google Scholar 

  3. E. Anders and N. Grevesse, Geochim. Cosmochim. Acta 53, 197 (1989).

    Article  ADS  Google Scholar 

  4. H. M. Antia and S. Basu, J. Phys. Conf. Ser. 271, 012034 (2011).

    Article  ADS  Google Scholar 

  5. M. Asplund, N. Grevesse, A. J. Sauval, et al., Astron. Astrophys. 417, 751 (2004).

    Article  ADS  Google Scholar 

  6. M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, Astron. Astrophys. 481, 522 (2009).

    Google Scholar 

  7. J. N. Bahcall and A. M. Serenelli, Astrophys. J. 626, 530 (2005).

    Article  ADS  Google Scholar 

  8. P. S. Barklem, Astron. Astrophys. 462, 781 (2007).

    Article  ADS  Google Scholar 

  9. P. S. Barklem, A. K. Belyaev, A. S. Dickinson, and F. X. Gadea, Astron. Astrophys. 519, A20 (2010).

    Article  ADS  Google Scholar 

  10. P. S. Barklem, A. K. Belyaev, A. Spielfiedel, et al., Astron. Astrophys. 541, A80 (2012).

    Article  ADS  Google Scholar 

  11. A. K. Belyaev and P. Barklem, Phys. Rev. A 68, 062703 (2003).

    Article  ADS  Google Scholar 

  12. A. K. Belyaev, P. S. Barklem, A. S. Dickinson, and F. X. Gadéa, Phys. Rev. A 81, 032706 (2010).

    Article  ADS  Google Scholar 

  13. A. K. Belyaev, J. Grosser, J. Hahne, and T. Menzel, Phys. Rev. A 60, 2151 (1999).

    Article  ADS  Google Scholar 

  14. A. K. Bhatia and S. O. Kastner, Astrophys. J. 96, 325 (1995).

    Article  ADS  Google Scholar 

  15. I. F. Bikmaev, T. A. Ryabchikova, H. Bruntt, et al., Astron. Astrophys. 389, 537 (2002).

    Article  ADS  Google Scholar 

  16. K. Butler and J. Giddings, Newslett. Anal. Astron. Spectra 9, Univ. London 723 (1985).

  17. E. Caffau, H. G. Ludwig, M. Steffen, et al., Astron. Astrophys. 488, 1031 (2008).

    Article  ADS  Google Scholar 

  18. E. Caffau, H. G. Ludwig, M. Steffen, et al., Solar Phys. 268, 255 (2011).

    Article  ADS  Google Scholar 

  19. M. Carlsson and P. G. Judge, Astrophys. J. 402, 344 (1993).

    Article  ADS  Google Scholar 

  20. A. Chiavassa, L. Bigot, P. Kervella, et al., Astron. Astrophys. 540, id.A5 (2012).

    Article  ADS  Google Scholar 

  21. H.W. Drawin, Z. Phys. 211, 404 (1968).

    Article  ADS  Google Scholar 

  22. H.W. Drawin, Z. Phys. 225, 483 (1969).

    Article  ADS  Google Scholar 

  23. D. Fabbian, M. Asplund, P. S. Barklem, et al., Astron. Astrophys. 500, 1221 (2009).

    Article  ADS  Google Scholar 

  24. L. Fossati, T. Ryabchikova, D.V. Shulyak, et al., Mon. Not. R. Astron. Soc. 417, 495 (2011).

    Article  ADS  Google Scholar 

  25. C. Froese Fisher, M. Saparov, G. Gaigalas, and M. Godefroid, At. Data Nucl. Data Tables 70, 119 (1998).

    Article  ADS  Google Scholar 

  26. I. Furenlid, T. Westin, and R. L. Kurucz, ASP Conf. Ser. 81, 615 (1995).

    ADS  Google Scholar 

  27. F. Grupp, R.L. Kurucz, and K. Tan, Astron. Astrophys. 503, 177 (2009).

    Article  ADS  Google Scholar 

  28. B. Gustafsson, B. Edvardsson, K. Eriksson, et al., Astron. Astrophys. 486, 951 (2008).

    Article  ADS  Google Scholar 

  29. G. M. Hill and J. D. Landstreet, Astron. Astrophys. 276, 142 (1993).

    ADS  Google Scholar 

  30. H. Holweger and E. A. Mueller, Solar Phys. 39, 19 (1974).

    Article  ADS  Google Scholar 

  31. A. Hui-Bon-Hoa, C. Burkhart, and G. Alecian, Astron. Astrophys. 323, 901 (1997).

    ADS  Google Scholar 

  32. H. R. Johnson, R. W. Milkey, and L. W. Ramsey, Astrophys. J. 187, 147 (1974).

    Article  ADS  Google Scholar 

  33. D. Kiselman, Astron. Astrophys. 245, L9 (1991).

    ADS  Google Scholar 

  34. O. P. Kochukhov, in Physics of Magnetic Stars, Ed. by I. I. Romanyuk, D. O. Kudryavtsev, O. M. Neizvestnaya, and V. M. Shapoval, Proc. Int. Conf. SAO Russia, August 28–31, 2006 (2007), p. 109.

  35. K. Kodaira and K. Tanaka, Astron. Soc. Jpn. 24, 355 (1972).

    ADS  Google Scholar 

  36. A. J. Korn, J. Shi, and T. Gehren, Astron. Astrophys. 407, 691 (2003).

    Article  ADS  Google Scholar 

  37. F. Kupka, N. E. Piskunov, T. A. Ryabchikova, et al., Astron. Astrophys. Suppl. Ser. 138, 119 (1999).

    Article  ADS  Google Scholar 

  38. R. Kurucz, Kurucz CD-ROM No. 13 (Smithsonian Astrophys. Observ., Cambridge, MA, 1993), Vol. 13.

    Google Scholar 

  39. R. Kurucz, I. Furenlid, J. Brault, and L. Testerman, National Solar Observatory Atlas, Sunspot (National Solar Observatory, New Mexico, 1984).

    Google Scholar 

  40. J. D. Landstreet, Astron. Astrophys. 528, A132 (2011)

    Article  ADS  Google Scholar 

  41. M. Lemke, Astron. Astrophys. 240, 331 (1990).

    ADS  Google Scholar 

  42. L. Mashonkina, A. J. Korn, and N. Przybilla, Astron. Astrophys. 461, 261 (2007).

    Article  ADS  Google Scholar 

  43. L. Mashonkina, T. Gehren, J. R. Shi, et al., Astron. Astrophys. 528, A87 (2011).

    Article  ADS  Google Scholar 

  44. J. Meléndez and B. Barbuy, Astron. Astrophys. 497, 611 (2009).

    Article  ADS  Google Scholar 

  45. T. V. Mishenina, S. A. Korotin, V. G. Klochkova, and V. E. Panchuk, Astron. Astrophys. 353, 978 (2000).

    ADS  Google Scholar 

  46. P. E. Nissen, F. Primas, M. Asplund, and D. L. Lambert, Astron. Astrophys. 390, 235 (2002).

    Article  ADS  Google Scholar 

  47. E. Paunzen, I. Kamp, I. Kh. Iliev, et al., Astron. Astrophys. 345, 597 (1999).

    ADS  Google Scholar 

  48. T. M. D. Pereira, M. Asplund, and D. Kiselman, Astron. Astrophys. 508, 1403 (2009).

    Article  ADS  Google Scholar 

  49. M. H. Pinsonneault and F. Delahaye, Astrophys. J. 649, 529 (2006).

    Article  ADS  Google Scholar 

  50. M. H. Pinsonneault and F. Delahaye, Astrophys. J. 704, 1174 (2009).

    Article  ADS  Google Scholar 

  51. N. Przybilla, K. Butler, S. R. Becker, et al., Astron. Astrophys. 359, 1085 (2000).

    ADS  Google Scholar 

  52. H. M. Qiu, G. Zhao, Y. Q. Chen, and Z. W. Li, Astrophys. J. 548, 953 (2001).

    Article  ADS  Google Scholar 

  53. A. J. J. Raassen and P. H. M. Uylings, Astron. Astrophys. 340, 300 (1998).

    ADS  Google Scholar 

  54. J. Reetz, Astrophys. Space Sci. 265, 171 (1999).

    Article  ADS  Google Scholar 

  55. H. van Regemorter, Astrophys. J. 136, 906 (1962).

    Article  ADS  Google Scholar 

  56. N. A. Sakhibullin, Tr. Kazan. Gor. Observ. 48, 9 (1983).

    ADS  Google Scholar 

  57. F. Schiller and N. Przybilla, Astron. Astrophys. 479, 849 (2008).

    Article  ADS  Google Scholar 

  58. N.G. Shchukina, Kinem. Fiz. Nebes. Tel 3, 36 (1987).

    ADS  Google Scholar 

  59. D. Shulyak, V. Tsymbal, T. Ryabchikova, et al., Astron. Astrophys. 428, 993 (2004).

    Article  ADS  Google Scholar 

  60. C. Sneden, D. L. Lambert, and R. W. Whitaker, Astrophys. J. 234, 964 (1979).

    Article  ADS  Google Scholar 

  61. W. Steenbock and H. Holweger, Astron. Astrophys. 130, 319 (1984).

    ADS  Google Scholar 

  62. Y. Takeda, Astron. Soc. Jpn. 44, 309 (1992).

    ADS  Google Scholar 

  63. Y. Takeda, Astron. Soc. Jpn. 47, 463 (1995).

    ADS  Google Scholar 

  64. R. Wooley and C. W. Allen, Mon. Not. R. Astron. Soc. 108, 292 (1948).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Sitnova.

Additional information

Original Russian Text © T.M. Sitnova, L.I. Mashonkina, T.A. Ryabchikova, 2013, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2013, Vol. 39, No. 2, pp. 146–160.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sitnova, T.M., Mashonkina, L.I. & Ryabchikova, T.A. Influence of departures from LTE on oxygen abundance determination in the atmospheres of A-K stars. Astron. Lett. 39, 126–140 (2013). https://doi.org/10.1134/S1063773713020084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773713020084

Keywords

Navigation