Skip to main content
Log in

Spatial variations of the extinction law in the galactic disk from infrared observations

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Infrared photometry in the J (1.2 µm), H (1.7 µm), Ks (2.2 µm) bands from the 2MASS catalogue and in the W1 (3.4 µm), W2 (4.6 µm), W3 (12 µm), W4 (22 µm) bands from the WISE catalogue is used to reveal the spatial variations of the interstellar extinction law in the infrared near the midplane of the Galaxy by the method of extrapolation of the extinction law applied to clump giants. The variations of the coefficients E(HW1)/E(HKs), E(HW2)/E(HKs), E(HW3)/E(HKs), and E(HW4)/E(HKs) along the line of sight in 2° × 2° squares of the sky centered at b = 0° and l = 20°, 30°, ..., 330°, 340° as well as in several 4° × 4° squares with |b| = 10° are considered. The results obtained here agree with those obtained by Zasowski et al. in 2009 using 2MASS and Spitzer-IRAC photometry for the same longitudes and similar photometric bands, confirming their main result: in the inner (relative to the Sun) Galactic disk, the fraction of fine dust increases with Galactocentric distance (or the mean dust grain size decreases). However, in the outer Galactic disk that was not considered by Zasowski et al., this trend is reversed: at the disk edge, the fraction of coarse dust is larger than that in the solar neighborhood. This general Galactic trend seems to be explained by the influence of the spiral pattern: its processes sort the dust by size and fragment it so that coarse and fine dust tend to accumulate, respectively, at the outer and inner (relative to the Galactic center) edges of the spiral arms. As a result, fine dust may exist only in the part of the Galactic disk far from both the Galactic center and the edge, while coarse dust dominates at the Galactic center, at the disk edge, and outside the disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. A. Benjamin, E. Churchwell, B. L. Babler, et al., Publ. Astron. Soc. Pacif. 115, 953 (2003).

    Article  ADS  Google Scholar 

  2. G. Bertelli, L. Girardi, P. Marigo, et al., Astron. Astrophys. 484, 815 (2008).

    Article  ADS  Google Scholar 

  3. J. A. Cardelli, G. C. Clayton and J. S. Mathis, Astrophys. J. 345, 245 (1989).

    Article  ADS  Google Scholar 

  4. B. T. Draine, Ann. Rev. Astron. Astrophys. 41, 241 (2003).

    Article  ADS  Google Scholar 

  5. R. Drimmel, A. Cabrera-Lavers, and M. Lopez-Corredoira, Astron. Astrophys. 409, 205 (2003).

    Article  ADS  Google Scholar 

  6. ESA, Hipparcos and Tycho Catalogues (ESA, 1997).

    Google Scholar 

  7. P. C. Frisch, J. M. Dorschner, J. Geiss, et al., Astrophys. J. 525, 492 (1999).

    Article  ADS  Google Scholar 

  8. G. A. Gontcharov, Astron. Lett. 34, 785 (2008).

    Article  ADS  Google Scholar 

  9. G. A. Gontcharov, Astron. Lett. 35, 638 (2009a).

    Article  ADS  Google Scholar 

  10. G. A. Gontcharov, Astron. Lett. 35, 780 (2009b).

    Article  ADS  Google Scholar 

  11. G. A. Gontcharov, Astron. Lett. 36, 584 (2010).

    Article  ADS  Google Scholar 

  12. G. A. Gontcharov, Astron. Lett. 38, 12 (2012a).

    Article  ADS  Google Scholar 

  13. G. A. Gontcharov, Astron. Lett. 38, 87 (2012b).

    Article  ADS  Google Scholar 

  14. M. A. T. Groenewegen, Astron. Astrophys. 488, 935 (2008).

    Article  ADS  Google Scholar 

  15. E. Høg, C. Fabricius, V. V. Makarov, et al., Astron. Astrophys. 355, L27 (2000).

    ADS  Google Scholar 

  16. R. Indebetouw, J. S. Mathis, B. L. Babler, et al., Astrophys. J. 619, 931 (2005).

    Article  ADS  Google Scholar 

  17. H. L. Jonhson and J. Borgman, Bull. Astron. Inst. Netherlands 17, 115 (1963).

    ADS  Google Scholar 

  18. H. Krüger, E. Grün, M. Landgraf, et al., Planet. Space Sci. 49, 1303 (2001).

    Article  ADS  Google Scholar 

  19. F. van Leeuwen, Astron. Astrophys. 474, 653 (2007).

    Article  ADS  Google Scholar 

  20. M. Lopez-Corredoira, A. Cabrera-Lavers, F. Garzon, et al., Astron. Astrophys. 394, 883 (2002).

    Article  ADS  Google Scholar 

  21. P. Marigo, L. Girardi, A. Bressan, et al., Astron. Astrophys. 482, 883 (2008).

    Article  ADS  Google Scholar 

  22. D. J. Marshall, A. C. Robin, C. Reyle, et al., Astron. Astrophys. 453, 635 (2006).

    Article  ADS  Google Scholar 

  23. S. Nishiyama, M. Tamura, H. Hatano, et al., Astrophys. J. 696, 1407 (2009).

    Article  ADS  Google Scholar 

  24. W. Reis and W. J. B. Corradi, Astron. Astrophys. 486, 471 (2008).

    Article  ADS  Google Scholar 

  25. S. Roeser, M. Demleitner, and E. Schilbach, Astron. J. 139, 2440 (2010).

    Article  ADS  Google Scholar 

  26. W. Skorzynski, A. Strobel, and G. Galazutdinov, Astron. Astrophys. 408, 297 (2003).

    Article  ADS  Google Scholar 

  27. M. F. Skrutskie, R. M. Cutri, R. Stiening, et al., Astron. J. 131, 1163 (2006); http://www.ipac.caltech.edu/2mass/releases/allsky/index.html.

    Article  ADS  Google Scholar 

  28. J. C. Weingartner and B. T. Draine, Astrophys. J. 548, 296 (2001).

    Article  ADS  Google Scholar 

  29. E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, et al., Astron. J. 140, 1868 (2010); http://irsa.ipac.caltech.edu/Missions/wise.html.

    Article  ADS  Google Scholar 

  30. G. Zasowski, S. R. Majewski, R. Indebetouw, et al., Astrophys. J. 707, 510 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Gontcharov.

Additional information

Original Russian Text © G.A. Gontcharov, 2013, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2013, Vol. 39, No. 2, pp. 102–114.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gontcharov, G.A. Spatial variations of the extinction law in the galactic disk from infrared observations. Astron. Lett. 39, 83–94 (2013). https://doi.org/10.1134/S1063773713020047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773713020047

Keywords

Navigation