Skip to main content
Log in

Lower bound on the magnetic field strength of a magnetar from analysis of SGR giant flares

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Based on the magnetar model, we have studied in detail the processes of neutrino cooling of an electron-positron plasma generating an SGR giant flare and the influence of the magnetar magnetic field on these processes. Electron-positron pair annihilation and synchrotron neutrino emission are shown to make a dominant contribution to the neutrino emissivity of such a plasma. We have calculated the neutrino energy losses from a plasma-filled region at the long tail stage of the SGR 0526-66, SGR 1806–20, and SGR 1900+14 giant flares. This plasma can emit the energy observed in an SGR giant flare only in the presence of a strongmagnetic field suppressing its neutrino energy losses. We have obtained a lower bound on the magnetic field strength and showed this value to be higher than the upper limit following from an estimate of the magnetic dipole losses for the magnetars being analyzed in a wide range of magnetar model parameters. Thus, it is problematic to explain the observed energy release at the long tail stage of an SGR giant flare in terms of the magnetarmodel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Beaudet, V. Petrosian, and E. E. Salpeter, Astrophys. J. 150, 979 (1967).

    Article  ADS  Google Scholar 

  2. A. M. Beloborodov, Astrophys. J. 703, 1044 (2009).

    Article  ADS  Google Scholar 

  3. A. M. Beloborodov and C. Thompson, Astrophys. J. 657, 967 (2007).

    Article  ADS  Google Scholar 

  4. G. S. Bisnovatyi-Kogan, Fiz. Elem. Chastits At. Yadra 37, 1235 (2006) [Phys. Part. Nucl. 37, 647 (2006)].

    Google Scholar 

  5. R. Dib, V. M. Kaspi, F. P. Gavriil, et al., Astrophys. J. 673, 1044 (2008).

    Article  ADS  Google Scholar 

  6. R. C. Duncan and C. Thompson, Astrophys. J. 392, L9 (1992).

    Article  ADS  Google Scholar 

  7. D. D. Frederiks, S. V. Golenetskii, V. D. Pal’shin, et al., Pis’ma Astron. Zh. 33, 3 (2007) [Astron. Lett. 33, 1 (2007)].

    Google Scholar 

  8. E. Gogus, P. M. Woods, C. Kouveliotou, et al., Astrophys. J. 532, L121 (2000).

    Article  ADS  Google Scholar 

  9. A. I. Ibragim, T. E. Strohmayer, P. M. Woods, et al., Astrophys. J. 558, 237 (2001).

    Article  ADS  Google Scholar 

  10. N. Itoh, H. Hayashi, A. Nishikawa, et al., Astrophys. J. 102, 411 (1996).

    Article  ADS  Google Scholar 

  11. A. D. Kaminker and D. G. Yakovlev, Zh. Eksp. Teor. Fiz. 103, 438 (1993) [J. Exp. Theor. Phys. 76, 229 (1993)].

    Google Scholar 

  12. A.D. Kaminker, O. Yu. Gnedin, D. G. Yakovlev, et al., Phys. Rev. D 46, 4133 (1992).

    Article  ADS  Google Scholar 

  13. E. M. Kantor and M. E. Gusakov, Mon. Not. R. Astron. Soc. 381, 1702 (2007).

    Article  ADS  Google Scholar 

  14. A. V. Kuznetsov, N. V. Mikheev, and L. A. Vassilevskaya, Phys. Lett. B 427, 105 (1998).

    Article  ADS  Google Scholar 

  15. M. Lyutikov, Mon. Not. R. Astron. Soc. 367, 1594 (2006).

    Article  ADS  Google Scholar 

  16. V. M. Malofeev, I. F. Malov, D. A. Teplych, et al., Astron. Rep. 49, 242 (2005).

    Article  ADS  Google Scholar 

  17. I. F. Malov and G. Z. Machabeli, Astron. Astrophys. Trans. 25, 7 (2006).

    Article  ADS  Google Scholar 

  18. E. P. Mazets, S. V. Golentskii, V. N. Ilinskii, et al., Nature 282, 587 (1979).

    Article  ADS  Google Scholar 

  19. S. Mereghetti, Astron. Astrophys. 15, 225 (2008).

    Article  ADS  Google Scholar 

  20. S. Mereghetti, D. Gotz, A. von Keinlin, et al., Astrophys. J. 624, L105 (2005).

    Article  ADS  Google Scholar 

  21. D. A. Rumyantsev and M. V. Chistyakov, Zh. Eksp. Teor. Fiz. 134, 627 (2008) [J. Exp. Theor. Phys. 107, 533 (2008)].

    Google Scholar 

  22. T. E. Strohmayer and A. L. Watts, Astrophys. J. 653, 593 (2006).

    Article  ADS  Google Scholar 

  23. C. Thompson and R. C. Duncan, Astrophys. J. 408, 194 (1993).

    Article  ADS  Google Scholar 

  24. C. Thompson and R. C. Duncan, Mon. Not. R. Astron. Soc. 275, 255 (1995).

    ADS  Google Scholar 

  25. C. Thompson and R. C. Duncan, Astrophys. J. 473, 322 (1996).

    Article  ADS  Google Scholar 

  26. C. Thompson and R. C. Duncan, Astrophys. J. 561, 980 (2001).

    Article  ADS  Google Scholar 

  27. A. L. Watts and T. E. Strohmayer, Astrophys. Space Sci. 308, 625 (2007).

    Article  ADS  Google Scholar 

  28. P. M. Woods, C. Kouveliotou, E. Gogus, et al., Astrophys. J. 629, 985 (2005).

    Article  ADS  Google Scholar 

  29. D. G. Yakovlev, A. D. Kaminker, O. Y. Gnedin, and P. Haensel, Phys. Rep. 354, 1 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gvozdev.

Additional information

Original Russian Text © A.A. Gvozdev, I.S. Ognev, E.V. Osokina, 2011, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2011, Vol. 37, No. 5, pp. 365–376.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gvozdev, A.A., Ognev, I.S. & Osokina, E.V. Lower bound on the magnetic field strength of a magnetar from analysis of SGR giant flares. Astron. Lett. 37, 332–342 (2011). https://doi.org/10.1134/S1063773711040025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773711040025

Keywords

Navigation