Skip to main content
Log in

Doppler tomography in three dimensions. Problems of realization

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) Doppler tomography is used to study the motions of gas flows in interacting stellar binary systems. This is achieved by applying a reconstruction method developed for few projections tomography, sometimes referred to as the radioastronomical approach (RA). An analysis of the geometry of the spatial arrangement of the aspects during the reconstruction of 3D tomograms using onedimensional profiles without the intermediate stage of constructing two-dimensional sections is presented. A method for estimating possibilities for reconstructing 3D tomograms based on the appearance of the summarized transfer function is proposed and justified. The influence of the inclination of the system on the resolutions along the main axes is considered. The number of aspects required to achieve a quality of the recontruction comparable to 2D versions is estimated. A comparative analysis of possible distortions of 2D and 3D Doppler tomograms in the presence of flow motions extending beyond the orbital plane is carried out. The analysis indicates the advantages of the 3D method. A summary of first observational results taking into account the velocity component perpendicular to the orbital plane of the binary system, V z , is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. R. Marsh and K. Horn, Mon. Not. R. Astron. Soc. 235, 269 (1988).

    ADS  Google Scholar 

  2. W. Kalender, Computed Tomography: Fundamentals, System Technology, Image Quality, Applications (Publicis Corporate Publ., Erlangen, 2000; Tekhnosfera, Moscow, 2006).

    Google Scholar 

  3. G. I. Vasilenko and A. M. Taratorin, Image Reconstruction (Radio i svyaz’, Moscow, 1986) [in Russian].

    Google Scholar 

  4. M. I. Agafonov, Radiophys. Quantum Electron. 47, 85 (2004).

    Article  ADS  Google Scholar 

  5. M. I. Agafonov and O. I. Sharova, Radiophys. Quantum Electron. 48, 329 (2005).

    Article  ADS  Google Scholar 

  6. M. I. Agafonov, Astron. Nachr. 325, 259 (2004).

    Article  ADS  Google Scholar 

  7. M. I. Agafonov, Astron. Nachr. 325, 263 (2004).

    Article  ADS  Google Scholar 

  8. M. I. Agafonov and O. I. Sharova, Astron. Nachr. 326, 143 (2005).

    Article  ADS  Google Scholar 

  9. M. I. Agafonov, M. T. Richards, and O. I. Sharova, Astrophys. J. 652, 1547 (2006).

    Article  ADS  Google Scholar 

  10. M. I. Agafonov, O. I. Sharova, and M. T. Richards, Astrophys. J. 690, 1730 (2009).

    Article  ADS  Google Scholar 

  11. M. T. Richards, O. I. Sharova, and M. I. Agafonov, Astrophys. J. 720, 996 (2010).

    Article  ADS  Google Scholar 

  12. O. I. Sharova, M. I. Agafonov, E. A. Karitskaya, et al., Kinem. Fiz. Nebesn. Tel 25, 349 (2009).

    Google Scholar 

  13. O. I. Sharova, M. I. Agafonov, E. A. Karitskaya, et al., in Proceedings of the All-Russia Astronomical Conference VAK-2010, “From the Epoch of Galilee up to the Present Time” (KADO, Gelendzhik, 2010), p. 110.

    Google Scholar 

  14. R. N. Bracewell and A. C. Riddle, Astrophys. J. 150, 427 (1967).

    Article  ADS  Google Scholar 

  15. E.A. Karitskaya, M. I. Agafonov, N.G. Bochkarev, et al., Astron. Astrophys. Trans. 24, 383 (2005).

    Article  ADS  Google Scholar 

  16. O. I. Sharova, in Planetary Nebulae in our Galaxy and Beyond, Ed. byM. J. Barlow and R. H. Mendez (Cambridge University Press, 2006), p. 507.

  17. O. I. Sharova and M. I. Agafonov, in Proceedings of the All-Russia Astronomical Conference VAK-2007 (Kazansk. Gos. Univ., 2007), p. 270.

  18. O. I. Sharova, M. I. Agafonov, E. A. Karitskaya, et al., in From Interacting Binaries to Exoplanets: Essential Modeling Tools, Ed. by M. Richards and I. Hubeny (Cambridge University Press, 2012), p. 201.

  19. S. Csizmadia, T. Borkovits, Z. Paragi, et al., Astrophys. J. 705, 436 (2009).

    Article  ADS  Google Scholar 

  20. R. T. Zavala, C. A. Hummel, D. A. Boboltz, et al., Astrophys. J. 715, L44 (2010).

    Article  ADS  Google Scholar 

  21. W. M. Peterson, R. L. Mutel, M. Gudel, and W. M. Goss, Nature 463, 207 (2010).

    Article  ADS  Google Scholar 

  22. O. A. Kuznetsov, D. V. Bisikalo, A. A. Boyarchuk, et al., Astron. Rep. 45, 872 (2001).

    Article  ADS  Google Scholar 

  23. D. Steeghs, Astron. Nachr. 325, 185 (2004).

    Article  ADS  Google Scholar 

  24. T. R. Marsh, in Astrotomography. Indirect Imaging Methods in Observational Astronomy, Ed. by H. M. J. Boffin, D. Steeghs, and J. Cuypers, Lect. Notes in Phys. Ser., vol. 573 (Springer, 2001), p. 1.

  25. L. Morales-Rueda, Astron. Nachr. 325, 193 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Agafonov.

Additional information

Original Russian Text © M.I. Agafonov, O.I. Sharova, 2013, published in Astronomicheskii Zhurnal, 2013, Vol. 90, No. 1, pp. 10–25.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agafonov, M.I., Sharova, O.I. Doppler tomography in three dimensions. Problems of realization. Astron. Rep. 57, 7–20 (2013). https://doi.org/10.1134/S1063772913010010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772913010010

Keywords

Navigation