Skip to main content
Log in

Wave propagation characteristics of helically orthotropic cylindrical shells and resonance emergence in scattered acoustic field. Part 1. Formulations

Acoustical Physics Aims and scope Submit manuscript

Abstract

The method of wave function expansion is adopted to study the three dimensional scattering of a plane progressive harmonic acoustic wave incident upon an arbitrarily thick-walled helically filament-wound composite cylindrical shell submerged in and filled with compressible ideal fluids. An approximate laminate model in the context of the so-called state-space formulation is employed for the construction of T-matrix solution to solve for the unknown modal scattering coefficients. Considering the nonaxisymmetric wave propagation phenomenon in anisotropic cylindrical components and following the resonance scattering theory which determines the resonance and background scattering fields, the stimulated resonance frequencies of the shell are isolated and classified due to their fundamental mode of excitation, overtone and style of propagation along the cylindrical axis (i.e., clockwise or anticlockwise propagation around the shell) and are identified as the helically circumnavigating waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Talmant and H. Batard, Proc. IEEE Ultrasonic Sym. 3, 1371 (1994).

    Article  Google Scholar 

  2. A. Migliori and J. L. Sarrao, Resonant Ultrasound Spectroscopy: Applications to Physics, Materials Measurements and Nondestructive Evaluation (Wiley, New York, 1997).

    Google Scholar 

  3. J. Y. Kim and J. G. Ih, Appl. Acoust. 64, 1187 (2003).

    Article  Google Scholar 

  4. S. M. Hasheminejad and M. Rajabi, Ultrasonics, 47, 32 (2007).

    Article  Google Scholar 

  5. F. Honarvar and A. N. Sinclair, Ultrasonics 36, 845 (1998).

    Article  Google Scholar 

  6. M. Rajabi and S. M. Hasheminejad, Ultrasonics, 49, 682 (2009).

    Article  Google Scholar 

  7. A. A. Kleshchev, Acoust. Phys. 60, 279 (2014).

    Article  ADS  Google Scholar 

  8. A. Tesei, W. L. J. Fox, A. Maguer, and A. Lovik, J. Acoust. Soc. Am. 108, 2891 (2000).

    Article  ADS  Google Scholar 

  9. D. Guicking, K. Goerk, and H. Peine, Proc. of SPIE–Int. Soc. Optic. Eng. 1700, 2 (1992).

    ADS  Google Scholar 

  10. L. Flax, L. R. Dragonette, and H. Uberall, J. Acoust. Soc. Am. 63, 723 (1978).

    Article  ADS  Google Scholar 

  11. J. D. Murphy, E. D. Breitenbach, and H. Uberall, J. Acoust. Soc. Am. 64, 678 (1978).

    Article  Google Scholar 

  12. G. C. Gaunaurd, App. Mech. Rev. 42, 143 (1989).

    Article  Google Scholar 

  13. H. Uberall, Acoustic Resonance Scattering (Gordon and Breach Sci., Philadelphia, 1992).

    Google Scholar 

  14. N. D. Veksler, Resonance Acoustic Spectroscopy. Springer Series on Wave Phenomena (Springer-Verlag, Berlin, 1993).

    Book  Google Scholar 

  15. J. J. Faran, J. Acoust. Soc. Am. 23, 405 1951).

    Article  ADS  MathSciNet  Google Scholar 

  16. L. Flax, G. C. Gaunaurd, and H. Uberall, in Physical Acoustics, Ed. by W. P. Mason and R. N. Thurston (New York, 1981), Vol. 15, Chap. 3, pp. 191–294.

    Article  Google Scholar 

  17. F. Honarvar and A. N. Sinclair, J. Acoust. Soc. Am. 100, 57 (1996).

    Article  ADS  Google Scholar 

  18. G. Kaduchak and C. M. Loeffler, J. Acoust. Soc. Am. 99, 2545 (1996).

    Article  ADS  Google Scholar 

  19. F. Ahmad and A. Rahman, Int. J. Eng. Sci. 38, 325 (2000).

    Article  Google Scholar 

  20. A. A. Kleshchev, Open J. Acoust. 3, 67 (2013).

    Article  ADS  Google Scholar 

  21. A. A. Kleshchev, Adv. Signal Proc. 1, 44 (2013).

    Google Scholar 

  22. N. B. Karabutov, and I. O. Belyaev, Acoust. Phys. 59, 667 (2013).

    Article  ADS  Google Scholar 

  23. N. V. Polikarpova, P. V. Mal’neva, and V. B. Voloshinov, Acoust. Phys. 59, 291 (2013).

    Article  ADS  Google Scholar 

  24. A. D. Pierce, Acoustics: An Introduction to Its Physical Principles and Applications (Am. Inst. Phys., New York, 1991).

    Google Scholar 

  25. J. D. Achenbach, Wave Propagation in Elastic Solids (North-Holland, New York, 1976).

    MATH  Google Scholar 

  26. S. G. Lekhnitsky, The Theory of Elasticity of an Anisotropic Body (Mir, Moscow, 1981), [in Russian], 2nd ed.

    Google Scholar 

  27. E. L. Shenderov, Emission and Scattering of Sound (Sudostroenie, Leningrad, 1989) [in?Russian].

    Google Scholar 

  28. M. S. Choi, Y. S. Joo, and J. Lee, J. Acoust. Soc. Am. 99, 2594 (1996).

    Article  ADS  Google Scholar 

  29. M. S. Choi, J. Korean Phys. Soc. 37, 519 (2000).

    Google Scholar 

  30. M. Rajabi and M. Behzad, Composite Struct. 116, 747 (2014).

    Article  Google Scholar 

  31. M. Rajabi, M. T. Ahmadian, and J. Jamali, Composite Struct. 128, 395 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Rajabi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajabi, M. Wave propagation characteristics of helically orthotropic cylindrical shells and resonance emergence in scattered acoustic field. Part 1. Formulations. Acoust. Phys. 62, 292–299 (2016). https://doi.org/10.1134/S1063771016030143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771016030143

Keywords

Navigation