Skip to main content
Log in

Biosynthesis of polyunsaturated fatty acids in zooxanthellae and polyps of corals

  • Biochemistry
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The fatty acid (FA) composition of zooxanthellae, polyp tissue, and intact colonies was determined in soft coral Sinularia sp. and hard coral Acropora sp. Analysis of the distribution of polyunsaturated fatty acids (PUFAs) among the zooxanthellae and the host organism showed that 18: 3n-6 and C18–22 PUFAs of the n-3 series (18: 4n-3, 20: 5n-3, 22: 5n-3, and 22: 6n-3) were mainly synthesized by the zooxanthellae and that C20–22 PUFAs of the n-6 series (20: 3n-6, 20: 4n-6, and 22: 4n-6) were synthesized in the polyp tissue. Soft coral polyps were able to synthesize tetracosapolyenoic FAs (24: 5n-6 and 24: 6n-3) and 18: 2n-7, their zooxanthellae synthesized C16 PUFAs (16: 2n-7, 16: 3n-4, and 16: 4n-1). It is supposed that the biosynthesis of 16: 2n-7 in Sinularia sp. and 18: 3n-6 in Acropora sp. is catalyzed by Δ6 desaturase. The relatively even distribution of three FAs (18: 2n-6, 18: 3n-6, and 16: 2n-7) among lipids of zooxanthellae and coral polyps indicates the possible transport of these FAs between symbionts and the host organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khotimchenko, S.V., Lipids of Marine Algae-Macrophytes and Grasses, Vladivostok: Dalnauka, 2003.

    Google Scholar 

  2. Al-Moghrabi, S., Allemand, D., Couret, J.M., and Jaubert, J., Fatty Acids of the Scleractinian Coral Galaxea fascicularis—Effect of Light and Feeding, J. Comp. Physiol., B, 1995, vol. 165, pp. 183–192.

    Article  Google Scholar 

  3. Andersson, B.A., Mass Spectrometry of Fatty Acid Pyrrolidides, Progr. Chem. Fats Other Lipids, 1978, vol. 16, pp. 279–308.

    Article  CAS  Google Scholar 

  4. Banaszak, A.T., Santos, M.G., LaJeunesse, T.G., and Lesser, M.P., The Distribution of Mycosporine-Like Amino Acids (MAAs) and the Phylogenetic Identity of Symbiotic Dinoflagellates in Cnidarian Hosts from the Mexican Caribbean, J. Exp. Mar. Biol. Ecol., 2006, vol. 337, pp. 131–146.

    Article  CAS  Google Scholar 

  5. Battey, J.F. and Patton, J.S., A Reevaluation of the Role of Glycerol in Carbon Translocation in Zooxanthellae-Coelenterate Symbiosis, Mar. Biol., 1984, vol. 79, pp. 27–38.

    Article  CAS  Google Scholar 

  6. Bishop, D.G. and Kenrick, J.R., Fatty Acid Composition of Symbiotic Zooxanthellae in Relation to their Hosts, Lipids, 1980, vol. 15, pp. 799–804.

    Article  CAS  Google Scholar 

  7. Bligh, E.G. and Dyer, W.J., A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol., 1959, vol. 37, pp. 911–918.

    CAS  PubMed  Google Scholar 

  8. Carreau, J.P. and Dubacq, J.P., Adaptation of Macro-Scale Method to the Micro-Scale for Fatty Acid Methyl Transesterification of Biological Lipid Extracts, J. Chromatogr., 1978, vol. 151, pp. 384–390.

    Article  CAS  Google Scholar 

  9. Christie, W.W., Equivalent Chain Lengths of Methyl Ester Derivatives of Fatty Acids on Gas Chromatography—a Reappraisal, J. Chromatogr., 1988, vol. 447, pp. 305–314.

    Article  CAS  Google Scholar 

  10. Dalsgaard, J., John M.S., Kattner G. et al. Fatty Acid Trophic Markers in the Pelagic Marine Environment, Adv. Mar. Biol., 2003, vol. 46, pp. 225–340.

    Article  PubMed  Google Scholar 

  11. Falkowski, P.G., Dubinsky, Z., Muscatine, L., and Porter J.W., Light and Bioenergetics of a Symbiotic Coral, Bioscience, 1984, vol. 34, pp. 705–709.

    Article  CAS  Google Scholar 

  12. Gurr, M.I., Harwood, J.L., and Frayn, K.N., Lipid Biochemistry: 5th ed., Oxford: Blackwell Science, 2002, pp. 46–51.

    Google Scholar 

  13. Harland, A.D., Navarro, J.C., Davies, P.S., and Fixter, L.M., Lipids of Some Caribbean and Red-Sea Corals—Total Lipid, Wax Esters, Triglycerides and Fatty Acids, Mar. Biol., 1993, vol. 117, pp. 113–117.

    Article  CAS  Google Scholar 

  14. Harwood, J.L., Lipid Metabolism, The Lipid Handbook: 3rd ed., Boca Raton: CRC Press, 2007, pp. 637–699.

    Chapter  Google Scholar 

  15. Hashimoto, N., Fujiwara, S., Watanabe, K. et al., Localization of Clavulones, Prostanoids with Antitumor Activity, within the Okinawan Soft Coral Clavu laria viridis (Alcyonacea, Clavulariidae): Preparation of a High-Purity Symbiodinium Fraction Using a Protease and a Detergent, Lipids, 2003, vol. 38, pp. 991–997.

    Article  CAS  PubMed  Google Scholar 

  16. Imbs, A.B., Demidkova, D.A., Dautova, T.N., and Latyshev, N.A., Fatty Acid Biomarkers of Symbionts and Unusual Inhibition of Tetracosapolyenoic Acid Biosynthesis in Corals (Octocorallia), Lipids, 2009, vol. 44, pp. 325–335.

    Article  CAS  PubMed  Google Scholar 

  17. Imbs, A.B., Latyshev, N.A., Zhukova, N.V., and Dautova, T.N., Comparison of Fatty Acid Compositions of Azooxanthellate Dendronephthya and Zooxanthellate Soft Coral Species, Comp. Biochem. Physiol. B., 2007, vol. 148, pp. 314–321.

    Article  PubMed  CAS  Google Scholar 

  18. Muscatine, L., Gates, R.D., and Lafontaine, I., Do Symbiotic Dinoflagellates Secrete Lipid Droplets?, Limnol. Oceanogr., 1994, vol. 39, pp. 925–929.

    Article  CAS  Google Scholar 

  19. Papina, M., Meziane, T., and van Woesik R., Symbiotic Zooxanthellae Provide the Host-Coral Montipora digitata with Polyunsaturated Fatty Acids, Comp. Biochem. Physiol. B., 2003, vol. 135, pp. 533–537.

    Article  CAS  PubMed  Google Scholar 

  20. Patton, J.S., Battey, J.F., Rigler, M.W. et al., A Comparison of the Metabolism of Bicarbonate C-14 and Acetate 1-C-14 and the Variability of Species Lipid Compositions in Reef Corals, Mar. Biol., 1983, vol. 75, pp. 121–130.

    Article  CAS  Google Scholar 

  21. Pereira, S.L., Leonard, A.E., and Mukerji, P., Recent Advances in the Study of Fatty Acid Desaturases from Animals and Lower Eukaryotes, Prostagl. Leukotr. Essent. Fatty Acids, 2003, vol. 68, pp. 97–106.

    Article  CAS  Google Scholar 

  22. Spencer, D.P., Effect of Daylight Variations on the Energy Budgets of Shallow-Water Corals, Mar. Biol., 1991, vol. 108, pp. 137–144.

    Article  Google Scholar 

  23. Stimson, J.S., Location, Quantity and Rate of Change in Quantity of Lipids in Tissue of Hawaiian Hermatypic Corals, Bull. Mar. Sci., 1987, vol. 41, pp. 889–904.

    Google Scholar 

  24. Treignier, C., Grover, R., Ferrier-Pages, C., and Tolosa, I., Effect of Light and Feeding on the Fatty Acid and Sterol Composition of Zooxanthellae and Host Tissue Isolated from the Scleractinian Coral Turbinaria reniformis, Limnol. Oceanogr., 2008, vol. 53, pp. 2702–2710.

    Article  CAS  Google Scholar 

  25. Yamashiro, H., Oku, H., Higa, H. et al., Composition of Lipids, Fatty Acids and Sterols in Okinawan Corals, Comp. Biochem. Physiol. B., 1999, vol. 122, pp. 397–407.

    Article  Google Scholar 

  26. Yamashiro, H., Oku, H., and Onaga, K., Effect of Bleaching on Lipid Content and Composition of Okinawan Corals, Fish. Sci., 2005, vol. 71, pp. 448–453.

    Article  CAS  Google Scholar 

  27. Zhukova, N.V., and Titlyanov, E.A., Fatty Acid Variations in Symbiotic Dinoflagellates from Okinawan Corals, Phytochemistry, 2003, vol. 62, pp. 191–195.

    Article  CAS  PubMed  Google Scholar 

  28. Zhukova, N.V., and Titlyanov, E.A., Effect of Light Intensity on the Fatty Acid Composition of Dinoflagellates Symbiotic with Hermatypic Corals, Bot. Mar., 2006, vol. 49, pp. 339–346.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Imbs.

Additional information

Original Russian Text © A.B. Imbs, I.M. Yakovleva, N.A. Latyshev, L.Q. Pham, 2010, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imbs, A.B., Yakovleva, I.M., Latyshev, N.A. et al. Biosynthesis of polyunsaturated fatty acids in zooxanthellae and polyps of corals. Russ J Mar Biol 36, 452–457 (2010). https://doi.org/10.1134/S1063074010060076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074010060076

Keywords

Navigation