Skip to main content
Log in

Paleoamygdala: The morphogenesis of nuclear-type, paleocortical and intermediate formations in the period of postnatal development in rats

  • Morphogenesis
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The cytoarchitectonics and expression of apoptosis (as an indicator of stabilization of formative processes) in nuclear, paleocortical, and intermediate formations of the paleoamygdala of the rat on days 21, 24, 28, and 31 of postnatal development was studied. The results of analysis suggest that the morphogenesis of these formations is characterized by heterochrony due to the complexity of their structural organization predefined by the phylogenetic age. On day 21 of postnatal development of the rat, only the dorsomedial nucleus is well differentiated; on days 24–28, the posterior medial nucleus is well differentiated. The medial part of the posterior cortical nucleus (intermediate formation) is differentiated from the lateral part of this nucleus on day 28. The lateral part of the posterior cortical nucleus, which exhibits the characteristics of a paleocortical formation, acquires the cytoarchitectonics characteristic of an adult animal on day 31 of postnatal development. The dynamics of changes in the apoptotic index reflects the stabilization of morphogenetic processes characterized on the basis of cytoarchitectonic criteria. The results of this study and the neurogenetic data, indicating the presence of spatiotemporal gradients in the formation of the amygdaloid complex and the multiplicity of the original histogenetic domains, confirm the correctness of the previous concept (Akmaev and Kalimullina, 1993) on the substrate of this brain structure as a nuclear-paleocortical component of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhmadeev, A.V., Structure and quantitative characteristics of nuclear and screen-type formations of the posterior part of the amygdaloid body, Neurosci. Behav. Physiol., 2001, vol. 4, pp. 391–394.

    Article  Google Scholar 

  • Akhmadeev, A.V., Effects of gender and neonatal androgenization on the dendroarchitectonics of neurons in the dorsomedial nucleus of the amygdaloid body of the brain, Neurosci. Behav. Physiol., 2007, vol. 5, pp. 531–514.

    Article  Google Scholar 

  • Akhmadeev, A.V., Organizing effect of androgenization on neurons in posterior medial nucleus of amygdala in rats, Russ. J. Dev. Biol., 2008, vol. 5, pp. 303–306.

    Article  Google Scholar 

  • Akmaev, I.G. and Kalimullina, L.B., Mindalevidnyi kompleks mozga: funktsional’naya morfologiya i neiroendokrinologiya (The Amygdaloid Complex of the Brain: Functional Morphology and Neuroendocrinology), Moscow: Nauka, 1993.

    Google Scholar 

  • Akhmadeev, A.V. and Kalimullina, L.B., The paleoamygdala: cytoarchitectonics, organization, and the cytological characteristics of its neurons, Neurosci. Behav. Physiol., 2005, vol. 8, pp. 799–804.

    Article  Google Scholar 

  • Bupesh, M., Legaz, I., Abellán, A., and Medina, L., Multiple telencephalic and extratelencephalic embryonic domains contribute neurons to the medial extended amygdala, J. Comp. Neurol., 2010. doi: 10.1002/cne.22581

    Google Scholar 

  • Bupesh, M., Legaz, I., Abellán, A., and Medina, L., Multiple telencephalic and extratelencephalic embryonic domains contribute neurons to the medial extended amygdale, J. Comp. Neurol., 2011, vol. 8, pp. 1505–1525.

    Article  Google Scholar 

  • Carney, R.S., Mangin, J.M., Hayes, L., et al., Sonic hedgehog expressing and responding cells generate neuronal diversity in the medial amygdale, Neural Dev., 2010, vol. 5, p. 14. doi: 10.1186/1749-8104-5-14

    Article  PubMed Central  PubMed  Google Scholar 

  • Chepurnov, S.A. and Chepurnova, N.E., Mindalevidnyi kompleks mozga (The Amygdaloid Complex of the Brain), Moscow: Izd. Mosk. Gos. Univ., 1981.

    Google Scholar 

  • Chiapponi, C., Piras, F., Fagioli, S., et al., Age-related brain trajectories in schizophrenia: a systematic review of structural MRI studies, Psychiatry Res., 2013, vol. 20. doi: pii: S0925-4927(13)00146-7.10.1016/j.pscychresns. 2013.05.003

  • Docke, F., Moldenhauer, P., Rohle, W., and Dorner, G., Tierexperimentalle Untersuchungen zur neurohormonallen Kontrolle der eiblichen Pubertat. 3. Der Einflus der mediokortikalen Amygdala auf die Ausreifung des positiven Ostrogen-Feedback, Zentralbl. Gynakol., 1978, vol. 100, pp. 931–941.

    CAS  PubMed  Google Scholar 

  • Filimonov, I.N., Izbrannye trudy (Selected Works), Moscow: Meditsina, 1974.

    Google Scholar 

  • García-López, M., Abellán, A., Legaz, I., et al., Histogenetic compartments of the mouse centromedial and extended amygdala based on gene expression patterns during development, J. Comp. Neurol., 2008, vol. 1, pp. 46–74.

    Article  Google Scholar 

  • Guirado, S., Real, M.A., and Dávila, J.C., Distinct immunohistochemically defined areas in the medial amygdala in the developing and adult mouse, Brain Res. Bull., 2008, vols. 2–4, pp. 214–217.

    Google Scholar 

  • Jagalska-Majewska, H., Wojcik, S., Dziewiatkowski, J., et al., Postnatal development of basolateral complex of rabbit amygdale, J. Anat., 2003, vol. 5, pp. 513–521.

    Article  Google Scholar 

  • Josephson, C.B., Dykeman, J., Fiest, K.M., et al., Systematic review and meta-analysis of standard vs selective temporal lobe epilepsy surgery, Neurology, 2013, vol. 18, pp. 1669–1676.

    Article  Google Scholar 

  • Kalimullina, L.B. and Akhmadeev, A.V., Archiamygdala: cytoarchitectonics, neural organization, and cytological characteristics of neurons, Fundam. Issled., 2005, no. 8, pp. 20–22.

    Google Scholar 

  • Kalinichenko, S.G. and Matveeva, N.Yu., Morphological characteristics of apoptosis and its significance in neurogenesis, Morfologiya, 2007, vol. 131, no. 2, pp. 16–28.

    CAS  Google Scholar 

  • Korochkin, L.I. and Mikhailov, F.G., Vvedenie v neirogenetiku (Introduction to Neurogenetics), Moscow: Nauka, 2000.

    Google Scholar 

  • Kozik, M. and Szczech, I., Histoenzymic investigation of the rat amygdala in the course of ontogenetic development, Acta Histochem., 1976, vol. 56, no. 1, pp. 24–39.

    Article  CAS  PubMed  Google Scholar 

  • Leontovich, T.A., Neironnaya organizatsiya podkorkovykh obrazovanii perednego mozga (Neural Organization of the Subcortical Structures of the Forebrain), Moscow: Meditsina, 1978.

    Google Scholar 

  • Lyubashina, O.A., The amygdaloid complex of the brain in the central regulation of visceral functions, Extended Abstract of Doctoral (Biol.) Dissertation, St. Petersburg: Inst. Fiziol. im. I.P. Pavlova, Ross. Akad. Nauk, 2008.

    Google Scholar 

  • Medina, L., Legaz, I., González, G., et al., Expression of Dbx1, Neurogenin 2, Semaphorin 5A, Cadherin 8, and Emx1 distinguish ventral and lateral pallial histogenetic divisions in the developing mouse claustroamygdaloid complex, J. Comp. Neurol., 2004, vol. 4, pp. 504–523.

    Article  Google Scholar 

  • Medina, L., Bupesh, M., and Abellan, A., Contribution of genoarchitecture to understanding forebrain evolution and development, with particular emphasis on the amygdala, Brain Behav. Evol., 2011, vol. 3, pp. 216–236.

    Article  Google Scholar 

  • Meier, P., Finch, A., and Evan, G., Apoptosis in development, Nature, 2000, vol. 407, pp. 796–801.

    Article  CAS  PubMed  Google Scholar 

  • Pigache, R.M., The anatomy of “paleocortex:” a critical review, Adv. Anat. Embryol. Cell Biol., 1970, vol. 6, pp. 1–62.

    Google Scholar 

  • Pro-Sistiaga, P., Mohedano-Moriano, A., Ubeda-Bañon, I., et al., Convergence of olfactory and vomeronasal projections in the rat basal telencephalon, J. Comp. Neurol., 2007, vol. 4, pp. 346–362.

    Article  Google Scholar 

  • Rakic, S., Neurogenes in adult primates, Prog. Brain Res., 2002, vol. 138, pp. 3–14.

    Article  CAS  PubMed  Google Scholar 

  • Rakic, S. and Zecevic, N., Programmed cell death in developing human telencephalon, Eur. J. Neurosci., 2000, vol. 12, no. 4, pp. 2721–2734.

    Article  CAS  PubMed  Google Scholar 

  • Rasia-Filho, A.A., Haas, D., De Oliveira, et al., Morphological and functional features of the sex steroid-responsive posterodorsal medial amygdale of adult rats, Mini Rev. Med. Chem., 2012, vol. 11, pp. 1090–1106.

    Article  Google Scholar 

  • Ricotti, M.P., Sviluppo ed acerescimento del corpo amigdaleo nel ratio albino, Mrch. Ital. Anat. Embriol., 1965, vol. 70, no. 1, pp. 157–176.

    CAS  Google Scholar 

  • Romanova, I.D., Respiratory effects of the amygdaloid complex nuclei and the mechanisms for their implementation, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Samara: Samar. Gos. Univ., 2005.

    Google Scholar 

  • Rosselli-Austin, L. and Altman, J., The postnatal development of the main olfactory bulb of the rat, J. Dev. Physiol., 1979, vol. 4, pp. 295–313.

    Google Scholar 

  • Salazar, I., Sanchez-Quinteiro, P., Cifuentes, J.M., et al., General organization of the perinatal and adult accessory olfactory bulb in mice, Anat. Rec. A Discov. Mol. Cell Evol. Biol., 2006, vol. 9, pp. 1009–1025.

    Article  Google Scholar 

  • Scalia, F. and Winans, S.S., The differential projections of the olfactory bulb and accessory olfactory bulb in mammals, J. Comp. Neurol., 1975, vol. 1, pp. 31–56.

    Article  Google Scholar 

  • Shul’govskii, V.V., Fiziologiya vysshei nervnoi deyatel’nosti s osnovami neirobiologii (Physiology of Higher Nervous Activity and the Basics of Neurobiology), Moscow: Akademia, 2003.

    Google Scholar 

  • Shuvaev, V.T. and Suvorov, N.F., Bazal’nye ganglii i povedenie (Basal Ganglia and Behavior), St. Petersburg: Nauka, 2001.

    Google Scholar 

  • Simonov, P.V., Motivirovannyi mozg (Motivated Brain), Moscow: Nauka, 1987.

    Google Scholar 

  • Zavarzin, A.A., Trudy po teorii parallelizma i evolyutsionnaya dinamika tkanei (Works on the Theory of Parallelism and the Evolutionary Dynamics of Tissues), Leningrad: Nauka, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Akhmadeev.

Additional information

Original Russian Text © A.V. Akhmadeev, L.B. Kalimullina, 2015, published in Ontogenez, 2015, Vol. 46, No. 1, pp. 31–37.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhmadeev, A.V., Kalimullina, L.B. Paleoamygdala: The morphogenesis of nuclear-type, paleocortical and intermediate formations in the period of postnatal development in rats. Russ J Dev Biol 46, 27–32 (2015). https://doi.org/10.1134/S1062360415010026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360415010026

Keywords

Navigation