Skip to main content

Lichen symbiosis: Search and recognition of partners

  • Botany
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The problems associated with the initial stages of the formation of the thallus of lichens, i.e., compatibility of symbiotic partners, recognition of symbionts, and signals required for the formation of the differentiated thallus, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadjian, V., Jacobs, J.B., and Russell, L.A., Scanning electron microscope study of early lichen synthesis, Science, 1978, vol. 200, pp. 1062–1064.

    Article  CAS  PubMed  Google Scholar 

  • Ahmadjian, V., Thelichensymbiosis, New York: John Wiley and Sons, 1993.

    Google Scholar 

  • Armaleo, D., Experimental microbiology of lichens— mycelia fragmentation, a novel growth chamber, and the origins of thallus differentiation, Symbiosis, 1991, vol. 11, pp. 163–177.

    Google Scholar 

  • Athukorala, S.N.P., Huebner, E., and Piercey-Normore, M.D., Identification and comparison of the 3 early stages of resynthesis for the lichen Cladonia rangiferina, Can. J. Microbiol., 2014, vol. 60, pp. 41–52.

    Article  CAS  PubMed  Google Scholar 

  • Athukorala, S.N.P. and Piercey-Normore, M.D., Recognition- and defense-related gene expression at 3 resynthesis stages in lichen symbionts, Can. J. Microbiol., 2015, vol. 61, pp. 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Barrett, J.T. and Howe, M.L., Hemagglutination and hemolysis by lichen extracts, Appl. Microbiol., 1968, vol. 16, pp. 1137–1139.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beck, A., Friedl, T., and Rambold, G., Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies, New Phytol., 1998, vol. 139, pp. 709–720.

    Article  CAS  Google Scholar 

  • Beck, A., Kasalicky, T., and Rambold, G., Mycophotobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida, New Phytol., 2002, vol. 153, pp. 317–326.

    Article  Google Scholar 

  • Blaha, J., Baloch, E., and Grube, M., High photobiont diversity associated with the euryoecious lichen-forming ascomycete Lecanora rupicola (Lecanoraceae, Ascomycota), Biol. J. Linn. Soc., 2006, vol. 88, pp. 283–293.

    Article  Google Scholar 

  • Bubrick, P. and Galun, M., Proteins from the lichen Xanthoria parietina which bind to phycobiont cell walls. Correlation between binding patterns and cell wall cytochemistry, Protoplasma, 1980, vol. 104, pp. 167–173.

    Article  CAS  Google Scholar 

  • Bubrick, P., Frensdorff, A., and Galun, M., Proteins from the lichen Xanthoria parietina which bind to phycobiont cell walls. Isolation and partial purification of an algal-binding protein, Symbiosis, 1985, vol. 1, pp. 85–95.

    CAS  Google Scholar 

  • Casano, L.M., del Campo, E.M., García-Breijo, F.J., Reig-Armiñana, J., Gasulla, F., del Hoyo, A., Guéra, A., and Barreno, E., Two trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition?, Environ. Microbiol., 2011, vol. 13, no. 3, pp. 806–818.

    Article  CAS  PubMed  Google Scholar 

  • Díaz, E.-M., Sacristán, M., Legaz, M.-E., and Vicente, C., Isolation and characterization of a cyanobacterium-binding protein and its cell wall receptor in the lichen Peltigera canina, Plant Signal. Behav., 2009, vol. 4, pp. 598–603.

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz, E.-M., Vicente-Manzanares, M., Sacristán, M., Vicente, C., and Legaz, M.-E., Fungal lectin of Peltigera canina induces chemotropism of compatible Nostoc cells by constriction-relaxation pulses of cyanobiont cytoskeleton, Plant Signal. Behav., 2011, vol. 6, pp. 1525–1536.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elifio, S.L., Silva, M., Iacomini, M., and Gorin, P.J., A lectin from the lichenized basidiomycete Dictyonema glabratum, New Phytol., 2000, vol. 148, pp. 327–334.

    Article  CAS  Google Scholar 

  • Etges, S. and Ott, S., Lichen mycobionts transplanted into the natural habitat, Symbiosis, 2001, vol. 30, pp. 191–206.

    Google Scholar 

  • Fedrowitz, K., Kaasalainen, U., and Rikkinen, J., Genotype variability of Nostoc symbionts associated with three epiphytic Nephroma species in a boreal forest landscape, Bryologist, 2011, vol. 114, pp. 220–230.

    Article  Google Scholar 

  • Feoktistov, A.S., Kitashov, A.V., and Lobakova, E.S., Characteristics of lectins of three-component lichen Peltigeraaphthosa (L.) Willd, Vestn. Mosk. Univ., Ser. 16: Biol., 2009, no. 1, pp. 26–30.

    Google Scholar 

  • Flora lishainikov Rossii. Biologiya, ekologiya, raznoobrazie, rasprostranenie i metody izucheniya lishainikov (Lichen Flora of Russia: Biology, Ecology, Diversity, Distribution, and Methods to Study Lichens), Andreev, M.P. and Gimel’brant, D.E., Eds., Moscow: KMK, 2014.

  • Fontaniella, B., Millanes, A.-M., Vicente, C., and Legaz, M.-E., Concanavalin A binds to a mannose-containing ligand in the cell wall of some lichen phycobionts, Plant Physiol. Biochem., 2004, vol. 42, pp. 773–779.

    Article  CAS  PubMed  Google Scholar 

  • Friedl, T., Thallus development and phycobionts of the parasitic lichen Diploschistes muscorum, Lichenologist, 1987, vol. 19, pp. 183–191.

    Article  Google Scholar 

  • Galun, M., Lichenization, in Handbook of Lichenology, vol. II, Galun, M., Ed., Florida: CRC Press, 1988, pp. 153–169.

  • Galun, M. and Bubrick, P., Physiological interactions between the partners of the lichen symbiosis, in Encyclopedia of Plant Physiology. Cellular Interactions, Linskens, H.F. and Heslop-Harrison, J., Eds., Berlin: Springer, 1984, pp. 362–401.

    Chapter  Google Scholar 

  • Gassmann, A. and Ott, S., Growth-strategy and the gradual symbiotic interactions of the lichen Ochrolechia frigida, Plant. Biol., 2000, vol. 2, pp. 368–378.

    Article  Google Scholar 

  • Goffinet, B. and Bayer, R.J., Characterization of mycobionts of photomorph pairs in the Peltigerineae (lichenized ascomycetes) based on internal transcribed spacer sequences of the nuclear ribosomal DNA, Fungal Genet. Biol., 1997, vol. 21, pp. 228–237.

    Article  CAS  PubMed  Google Scholar 

  • Gololobova, M.A., The position of “lower plants” on the tree of life, Biol. Bull., 2015, vol. 42, no. 6, pp. 500–507.

    Article  Google Scholar 

  • Guzow-Krzeminska, B., Photobiont flexibility in the lichen Protoparmeliopsis muralis as revealed by its rDNA analyses, Lichenologist, 2006, vol. 38, pp. 469–476.

    Article  Google Scholar 

  • Guzow-Krzeminska, B. and Stocker-Wörgötter, E., In vitro culturing and resynthesis of the mycobiont Protoparmeliopsis muralis with algal bionts, Lichenologist, 2013, vol. 45, pp. 65–76.

    Article  Google Scholar 

  • Hedenås, H., Blomberg, P., and Ericson, L., Significance of old aspen (Populus tremula) trees for the occurrence of lichen photobionts, Biol. Cons., 2007, vol. 135, pp. 380–387.

    Article  Google Scholar 

  • Helms, G., Taxonomy and symbiosis in associations of Physciaceae and Trebouxia, PhD Thesis, Göttingen: Georg-August Univ., 2003.

    Google Scholar 

  • Helms, G., Friedl, T., Rambold, G., and Mayrhofer, H., Identification of photobionts from the lichen family Physciaceae using algal-specific its rDNA sequencing, Lichenologist, 2001, vol. 33, pp. 73–86.

    Article  Google Scholar 

  • Hill, D.J., The control of the cell cycle in microbial symbionts, New Phytol., 1989, vol. 112, pp. 175–184.

    Article  Google Scholar 

  • Hill, D.J., The co-ordination of development of symbionts in mutualistic symbiosis with reference to the cell cycle of the photobionts in lichens, Symbiosis, 1992, vol. 14, pp. 325–333.

    Google Scholar 

  • Honegger, R., The symbiotic phenotype of lichen-forming Ascomycetes and their endo- and epibionts, in The Mycota, vol. IX, Fungal Ass., 2nd ed., Esser, K., Ed., Berlin: Springer, 2012, pp. 228–339.

    Google Scholar 

  • Joneson, S., Armaleo, D., and Lutzoni, F., Fungal and algal gene expression in early developmental stages of lichensymbiosis, Mycologia, 2011, vol. 103, pp. 291–306.

    Article  CAS  PubMed  Google Scholar 

  • Kitashov, A.V., Feoktistov, A.S., and Lobakova, E.S., Characteristics of lectin distribution in thalli of foliose cyanolichens, Byul. Mosk. Obshch. Ispytat. Prirody. Otd. Biol., 2009, vol. 114, no. 2, pp. 58–60.

    Google Scholar 

  • Lakhtin, V., Lakhtin, M., and Alyoshkin, V., Lectins of living organisms. The overview, Anaerobe, 2011, vol. 17, pp. 452–455.

    Article  CAS  PubMed  Google Scholar 

  • Legaz, M.-E., Fontaniella, B., Millanes, A.-M., and Vicente, C., Secreted arginases from phylogenetically farrelated lichen species act as cross-recognition factors for two different algal cells, Eur. J. Cell Biol., 2004, vol. 83, pp. 435–446.

    Article  CAS  PubMed  Google Scholar 

  • Lehr, H., Galun, M., Ott, S., Jahns, H.M., and Fleminger, G., Cephalodia of the lichen Peltigera aphthosa. Specific recognition of the compatible photobiont, Symbiosis, 2000, vol. 29, pp. 357–365.

    Google Scholar 

  • Lindgren, H., Velmala, S., Hognabba, F., Goward, T., Holien, H., and Myllys, L., High fungal selectivity for algal symbionts in the genus Bryoria, Lichenologist, 2014, vol. 46, pp. 681–695.

    Article  Google Scholar 

  • Lines, C.E., Ratcliffe, R.G., Rees, T.A., and Southon, T.E., A C-13 NMR study of photosynthate transport and metabolism in the lichen Xanthoria calcicola Oxner, New Phytol., 1989, vol. 111, pp. 447–456.

    Article  CAS  Google Scholar 

  • Lockhart, C.M., Rowell, P., and Stewart, W.D.P., Phytohaemagglutinins from the nitrogen-fixing lichens Peltigera canina and P. polydactyla, FEMS Microbiol. Letts., 1978, vol. 3, pp. 127–130.

    Article  CAS  Google Scholar 

  • Lutzoni, F., Pagel, M., and Reeb, V., Major fungal lineages are derived from lichen symbiotic ancestors, Nature, 2001, vol. 411, pp. 937–940.

    Article  CAS  PubMed  Google Scholar 

  • Manoharan, S.S., Miao, V.P.W., and Andrésson, O.S., Lec-2, a highly variable lectin in the lichen Peltigera membranacea, Symbiosis, 2012, vol. 58, pp. 91–98.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marx, M. and Peveling, E., Surface receptors in lichen symbionts visualized by fluorescence microscopy after use of lectins, Protoplasma, 1983, vol. 114, pp. 52–61.

    Article  Google Scholar 

  • Meeβen, J., Eppenstein, S., and Ott, S., Recognition mechanisms during the pre-contact state of lichens: II. Influence of algal exudates and ribitol on the response of the mycobiont of Fulgensia bracteata, Symbiosis, 2013, vol. 59, pp. 131–143.

    Article  Google Scholar 

  • Meeβen, J. and Ott, S., Recognition mechanisms during the pre-contact state of lichens: i. mycobiont-photobiont interactions of the mycobiont of Fulgensia bracteata, Symbiosis, 2013, vol. 59, pp. 121–130.

    Article  Google Scholar 

  • Miao, V.P.W., Manoharan, S.S., Snæbjarnarson, V., and Andrésson, O.S., Expression of lec-1, a mycobiont gene encoding a galectin-like protein in the lichen Peltigera membranacea, Symbiosis, 2012, vol. 57, pp. 23–31.

    Article  CAS  Google Scholar 

  • Molina, M.C. and Vicente, C., Correlationships between enzymatic activity of lectins, putrescine content and chloroplast damage in Xanthoria parietina phycobionts, Cell Adhesion Comm., 1995, vol. 3, pp. 1–12.

    Article  CAS  Google Scholar 

  • Molina, M.C. and Vicente, C., Purification and characterization of two isolectins with arginase activity from the lichen Xanthoria parietina, J. Biochem. Mol. Biol., 2000, vol. 33, pp. 300–307.

    CAS  Google Scholar 

  • Molina, M.C., Muñiz, E., and Vicente, C., Enzymatic activities of algal-binding protein and its algal cell wall receptor in the lichen Xanthoria parietina. An approach to the parasitic basis of mutualism, Plant Physiol. Biochem., 1993, vol. 31, pp. 131–142.

    CAS  Google Scholar 

  • Nakano, T. and Ihda, T., The identity of phycobionts from the lichen Pyrenula japonica, Lichenologist, 1996, vol. 28, pp. 437–442.

    Google Scholar 

  • Nyati, S., Scherrer, S., Werth, S., and Honegger, R., Green-algal photobiont diversity (Trebouxia spp.) in representatives of Teloschistaceae (Lecanoromycetes, lichenforming ascomycetes), Lichenologist, 2014, vol. 46, pp. 189–212.

    Article  Google Scholar 

  • Ott, S., Sexual reproduction and developmental adaptations in Xanthoria parietina, Nordic J. Bot., 1987, vol. 7, pp. 219–228.

    Article  Google Scholar 

  • Paulsrud, P., Rikkinen, J., and Lindblad, P., Spatial patterns of photobiont diversity in some Nostoc containing lichens, New Phytol., 2000, vol. 146, pp. 291–299.

    Article  Google Scholar 

  • Paulsrud, P., Rikkinen, J., and Lindblad, P., Field experiments on cyanobacterial specificity in Peltigera aphthosa, New Phytol., 2001, vol. 152, pp. 117–123.

    Article  Google Scholar 

  • Petit, P., Phytolectins from the nitrogen-fixing lichen Peltigera horizontalis: the binding pattern of primary protein extract, New Phytol., 1982, vol. 91, pp. 705–710.

    Article  CAS  Google Scholar 

  • Petit, P., Lallemant, R., and Savoye, D., Purified phytolectin from the lichen Peltigera canina var. canina which binds to the phycobiont cell walls and its use as cytochemical marker, New Phytol., 1983, vol. 94, pp. 103–110.

    Article  CAS  Google Scholar 

  • Piercey-Normore, M.D., Selection of algal genotypes by three species of lichen fungi in the genus Cladonia, Can. J. Bot., 2004, vol. 82, pp. 947–961.

    Article  CAS  Google Scholar 

  • Piercey-Normore, M.D., The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii, New Phytol., 2006, vol. 169, pp. 331–344.

    Article  CAS  PubMed  Google Scholar 

  • Planelles, V. and Legaz, M.E., Purification and some properties of the secreted arginase of the lichen Evernia prunastri and its regulation by usnic acid, Plant Sci., 1987, vol. 51, pp. 9–16.

    Article  CAS  Google Scholar 

  • Rikkinen, J., Cyanolichens: an evolutionary overview, in Cyanobacteria in Symbiosis, Rai, A.N., Bergman, B., and Rasmussen, U., Eds., Netherlands: Kluwer Acad. Publ., 2002, pp. 31–72.

    Google Scholar 

  • Sacristán, M., Millanes, A.-M., Legaz, M.E., and Vicente, C., A lichen lectin specifically binds to the a-1,4-polygalactoside moiety of urease located in the cell wall of homologous algae, Plant Signal. Behav., 2006, vol. 1, pp. 23–27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sacristán, M., Vivas, M., Millanes, A.-M., Fontaniella, B., Vicente, C., and Legaz, M.-E., The recognition pattern of green algae by lichenized fungi can be extended to lichens containing a cyanobacterium as photobiont, in Communicating Current Research and Educational Topics and Trends in Applied Microbiology, Méndez-Vilas, A., Ed., Spain, Extremadura: Formatex, 2007, pp. 213–219.

    Google Scholar 

  • Sanders, W.B. and Lücking, R., Reproductive strategies, relichenization and thallus development observed in-situ in leaf-dwelling lichen communities, New Phytol., 2002, vol. 155, pp. 425–435.

    Article  Google Scholar 

  • Schaper, G.M. and Ott, S., Photobiont selectivity and interspecific interactions in lichen communities. Culture experiments with the mycobiont Fulgensia bracteata, Plant Biol., 2003, vol. 5, pp. 441–450.

    Article  Google Scholar 

  • Singh, R.S. and Walia, A.K., Characteristics of lichen lectins and their role in symbiosis, Symbiosis, 2014, vol. 62, pp. 123–134.

    Article  CAS  Google Scholar 

  • Skorpil, P. and Broughton, W.J., Molecular interactions between Rhizobium and legumes, in Molecular Basis of Symbiosis, Overmann, J., Ed., Berlin: Springer-Verlag, 2006, pp. 143–156.

    Chapter  Google Scholar 

  • Smith, S.E. and Reed, D.J., Mikoriznyi simbioz (Mycorrhizal symbiosis), Moscow: KMK, 2012.

    Google Scholar 

  • Vivas, M., Sacristán, M., Legaz, M.-E., and Vicente, C., The cell recognition model in chlorolichens involving a fungal lectin binding to an algal ligand can be extended to cyanolichens, Plant Biol., 2010, vol. 12, pp. 615–621.

    CAS  PubMed  Google Scholar 

  • Wang, Y.-Y., Liu, B., Zhang, X.-Y., Zhou, Q.-M., Zhang, T., Li, H., Yu, Y.-F., Zhang, X.-L., Hao, X.-Y., Wang, M., Wang, L., and Wei, J.-C., Genome characteristics reveal the impact of lichenization on lichen-forming fungus Endocarpon pusillum Hedwig (Verrucariales, Ascomycota), BMC Genom., 2014, vol. 15, p. 18.

    Article  Google Scholar 

  • Wirtz, N., Lumbsch, H.T., Green, T.G.A., Turk, R., Pintado, A., Sancho, L., and Schroeter, B., Lichen fungi have low cyanobiont selectivity in maritime Antarctica, New Phytol., 2003, vol. 160, pp. 177–183.

    Article  Google Scholar 

  • Wornik, S. and Grube, M., Joint dispersal does not imply maintenance of partnerships in lichen symbioses, Microb. Ecol., 2010, vol. 59, pp. 150–157.

    Article  PubMed  Google Scholar 

  • Yahr, R., Vilgalys, R., and DePriest, P.T., Geographic variation in algal partners in Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis, New Phytol., 2006, vol. 171, pp. 847–860.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Insarova.

Additional information

Original Russian Text © I.D. Insarova, E.Yu. Blagoveshchenskaya, 2016, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2016, No. 5, pp. 479–490.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Insarova, I.D., Blagoveshchenskaya, E.Y. Lichen symbiosis: Search and recognition of partners. Biol Bull Russ Acad Sci 43, 408–418 (2016). https://doi.org/10.1134/S1062359016040038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359016040038

Navigation