Skip to main content
Log in

Parameters of energy and nitrogen metabolism in rats under insulin-induced hypoglycemia

  • Human and Animal Physiology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Repeated severe insulin-induced hypoglycemia in rats has led to an increase in aminotransferase, glutaminase, and glutamate dehydrogenase activities in the liver; protease activities in tissues; and in blood serum levels of free fatty acids, urea, and uric acid. These changes are indicative of gluconeogenesis activation in animals exposed to hyperinsulinization. Decreased rates of glycolysis and glycogenolysis, reduced activities of NADP-dependent dehydrogenases, and substantial changes in the activities of enzymes responsible for metabolism of nucleotides and transmitter amino acids have been observed in the brain. All these changes are mainly associated with hypoglycemia and activation of the contrainsular system and can play a significant role in pathogenesis of posthypoglycemic encephalopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adkins, A., Basu, R., Persson, M., et al., Higher Insulin Concentrations are Required to Suppress Gluconeogenesis than Glycogenolysis in Nondiabetic Humans, Diabetes, 2003, vol. 52, pp. 2213–2220.

    Article  PubMed  CAS  Google Scholar 

  • Ames, A. III, CNS Energy Metabolism as Related to Function, Brain Res. Rev., 2000, vol. 34, pp. 42–68.

    Article  PubMed  CAS  Google Scholar 

  • Amiel, S.A., Studies in Hypoglycaemia in Children with Insulin-Dependent Diabetes Mellitus, Horm. Res., 1996, vol. 45, pp. 285–290.

    Article  PubMed  CAS  Google Scholar 

  • Auer, R.N., Hypoglycemic Brain Damage, Stroke, 1986, vol. 17, pp. 699–708.

    PubMed  CAS  Google Scholar 

  • Balabolkin, M.I., Diabetologiya (Diabetology), Moscow: Meditsina, 2000.

    Google Scholar 

  • Bolli, G.B. and Fanelli, C.G., Physiology of Glucose Counterregulation to Hypoglycemia, Endocrinol. Metab. Clin., 1999, vol. 28, pp. 467–493.

    Article  CAS  Google Scholar 

  • Brown, A.M., Brain Glycogen Re-Awakened, J. Neurochem., 2004, vol. 89, pp. 537–552.

    Article  PubMed  CAS  Google Scholar 

  • Charlton, M. and Nair, K.S., Protein Metabolism in Insulin-Dependent Diabetes Mellitus, J. Nutr., 1998, vol. 128, pp. 323–327.

    Google Scholar 

  • Cryer, P.E., Davis, S.N., and Shamoon, H., Hypoglycemia in Diabetes, Diabetes Care, 2003, vol. 26, pp. 1902–1912.

    Article  PubMed  CAS  Google Scholar 

  • Edgerton, D.S., Cardin, S., Pan, C., et al., Effects of Insulin Deficiency or Excess on Hepatic Gluconeogenic Flux during Glycogenolytic Inhibition in the Conscious Dog, Diabetes, 2002, vol. 51, pp. 3151–3162.

    Article  PubMed  CAS  Google Scholar 

  • Erecinska, M., Nelson, D., and Silver, I.A., Metabolic and Energetic Properties of Isolated Nerve Ending Particles (Synaptosomes), Biochim. Biophys. Acta, 1996, vol. 1277, pp. 13–34.

    Article  PubMed  Google Scholar 

  • Ferre, P., Foretz, M., Azzout-Marniche, D., et al., Sterol-Regulatory-Element-Binding Protein 1c Mediates Insulin Action on Hepatic Gene Expression, Biochem. Soc. Trans., 2001, vol. 29, pp. 547–552.

    Article  PubMed  CAS  Google Scholar 

  • Gastaldelli, A., Toschi, E., Pettiti, M., et al., Effect of Physiological Hyperinsulinemia on Gluconeogenesis in Nondiabetic Subjects and in Type 2 Diabetic Patients, Diabetes, 2001, vol. 50, pp. 1807–1812.

    Article  PubMed  CAS  Google Scholar 

  • Gerlach, M., Ben-Shachar, D., Riederer, P., and Youdim, M.B.H., Altered Brain Metabolism of Iron as a Cause of Neurodegenerative Diseases?, J. Neurochem., 1994, vol. 63, pp. 793–807.

    Article  PubMed  CAS  Google Scholar 

  • Greene, A.E., Todorova, M.T., and Seyfried, T.N., Perspectives on the Metabolic Management of Epilepsy through Dietary Reduction of Glucose and Elevation of Ketone Bodies, J. Neurochem., 2003, vol. 86, pp. 529–537.

    Article  PubMed  CAS  Google Scholar 

  • Halliwel, B., Reactive Oxygen Species and the Central Nervous System, J. Neurochem., 1992, vol. 59, pp. 1609–1623.

    Article  Google Scholar 

  • Honegger, P., Braissant, O., Henry, H., et al., Alteration of Amino Acid Metabolism in Neuronal Aggregate Cultures Exposed to Hypoglycaemic Conditions, J. Neurochem., 2002, vol. 81, pp. 1141–1151.

    Article  PubMed  CAS  Google Scholar 

  • Horber, F.F. and Haymond, M.W., Human Growth Hormone Prevents the Protein Catabolic Side Effects of Prednisone in Humans, J. Clin. Invest., 1990, vol. 86, pp. 265–272.

    Article  PubMed  CAS  Google Scholar 

  • Inouye, K., Shum, K., Chan, O., et al., Effects of Recurrent Hyperinsulinemia with and Without Hypoglycemia on Counterregulation in Diabetic Rats, Am. J. Physiol. Endocrinol. Metab., 2002, vol. 282, pp. 1369–1379.

    Google Scholar 

  • Lipton, P. and Robacker, K., Glycolysis and Brain Function: [K+] Stimulation of Protein Synthesis and K+ Uptake Require Glycolysis, Fed. Proc., 1983, vol. 42, pp. 2875–2880.

    PubMed  CAS  Google Scholar 

  • Lipton, P., Glycolysis Is Necessary for Normal Synaptic Transmission in Guinea-Pig Hippocampal Slices, Soc. Neurosci. Symp. Abstr., 1991, vol. 17, p. 1155.

    Google Scholar 

  • Magen, A., Koren-Schwartzer, N., Chen-Zion, M., and Beitner, R., Effect of Insulin-Induced Hypoglycemia on Cytoskeleton-Bound and Cytosolic Phosphofructokinase and the Levels of Glucose 1,6-Bisphosphate in Rat Brain, Biochem. Mol. Med., 1995, vol. 56, pp. 94–98.

    Article  PubMed  CAS  Google Scholar 

  • Magistretti, P.J. and Pellerin, L., Cellular Mechanisms of Brain Energy Metabolism: Relevance to Functional Brain Imaging and to Neurodegenerative Disorders, Ann. N.Y. Acad. Sci., 1996, vol. 777, pp. 380–387.

    Article  PubMed  CAS  Google Scholar 

  • Marks, V. and Teale, J.D., Hypoglycemia: Factitious and Felonious, Endocrinol. Metab. Clin., 1999, vol. 28, pp. 579–601.

    Article  CAS  Google Scholar 

  • Men’shikov, V.V., Laboratornye metody issledovaniya v klinike (Laboratory Research Methods in Clinical Medicine), Moscow: Meditsina, 1987.

    Google Scholar 

  • Murti, V., Prakash, G.S., and Subramanyan, K., Activities of Acidic and Neutral Proteases in Different Brain Departments of Rats: Distribution in Glia and Neurons, Neirokhimiya, 1985, no. 1, pp. 52–55.

  • Nissim, I., Brosnan, M., Yudkoff, M., et al., Studies of Hepatic Glutamine Metabolism in the Perfused Rat Liver with 15N-Labeled Glutamine, J. Biol. Chem., 1999, vol. 274, pp. 28958–28965.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, R.M., Streeper, R.S., Ayala, J.E., et al., Insulin-Regulated Gene Expression, Biochem. Soc. Trans., 2001, vol. 29, pp. 552–558.

    Article  PubMed  CAS  Google Scholar 

  • Panin, L.E., Tret’yakova, T.A., Russkikh, G.S., and Voitsekhovskaya, E.E., Features of Regulation of Key Glycolytic Enzymes and the Pentose Phosphate Pathway in Differently Specialized Tissues, Vopr. Med. Khim., 1982, no. 2, pp. 26–30.

  • Pellerin, L. and Magistretti, P.J., Glutamate Uptake into Astrocytes Stimulates Aerobic Glycolysis: A Mechanism Coupling Neuronal Activity to Glucose Utilization, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 10625–10629.

    Article  PubMed  CAS  Google Scholar 

  • Prokhorova, M.I., Metody biokhimicheskikh issledovanii: Lipidnyi i energeticheskii obmen (Methods of Biochemical Research: Lipid and Energy Metabolism), Leningrad: Leningr. Gos. Univ., 1982.

    Google Scholar 

  • Ros, J., Pecinska, N., Alessandri, B., et al., Lactate Reduces Glutamate-Induced Neurotoxicity in Rat Cortex, J. Neurosci. Res., 2001, vol. 66, pp. 790–794.

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky, R.M., Cellular Defenses against Excitotoxic Insults, J. Neurochem., 2001, vol. 76, pp. 1601–1611.

    Article  PubMed  CAS  Google Scholar 

  • Staehr, P., Hother-Nielsen, O., Landau, B.R., et al., Effects of Free Fatty Acids per se on Glucose Production, Gluconeogenesis, and Glycogenolysis, Diabetes, 2003, vol. 52, pp. 260–267.

    Article  PubMed  CAS  Google Scholar 

  • Telushkin, P.K., Intensity of Lipid Peroxidation, Activity of NADP-Dependent Dehydrogenases and Proteases in the Brain of Rats Repeatedly Injected with Insulin, Probl. Endokrinol., 1998, no. 3, pp. 35–38.

  • Telushkin, P.K. and Nozdrachev, A.D., Hypoglycemia and Brain: Metabolism and Mechanisms of Neuron Damage, Usp. Fiziol. Nauk, 1999, no. 4, pp. 14–27.

  • Telushkin, P.K., Nozdrachev, A.D., and Potapov, P.P., Activities of Deamination Enzymes in the Brain of Rats during Recovery from Insulin-Induced Hypoglycemia, Probl. Endokrinol., 2001, no. 5, pp. 43–45.

  • Timothy, G.R., Obesity. Fat Cells, Endocrinol. Metab. Clin., 1996, vol. 25, pp. 847–867.

    Article  Google Scholar 

  • Todorov, I., Klinicheskie laboratornye issledovaniya v pediatrii (Clinical Laboratory Investigations in Pediatrics), Sofia: Meditsina i Fizkul’tura, 1961.

    Google Scholar 

  • Tombaugh, G.C. and Sapolsky, R.M., Evolving Concepts about Role of Acidosis in Ischemic Neuropathology, J. Neurochem., 1993, vol. 61, pp. 793–803.

    Article  PubMed  CAS  Google Scholar 

  • Watford, M., Hepatic Glutaminase Expression: Relationship to Kidney-Type Glutaminase and to the Urea Cycle, FASEB J., 1993, vol. 7, pp. 1468–1474.

    PubMed  CAS  Google Scholar 

  • Zeevalk, G.D. and Nicklas, W.J., Lactate Prevents the Alterations in Tissue Amino Acids, Decline in ATP, and Cell Damage due to Aglycemia in Retina, J. Neurochem., 2000, vol. 75, pp. 1027–1034.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © P.K. Telushkin, A.D. Nozdrachev, P.P. Potapov, 2008, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2008, No. 3, pp. 324–332.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Telushkin, P.K., Nozdrachev, A.D. & Potapov, P.P. Parameters of energy and nitrogen metabolism in rats under insulin-induced hypoglycemia. Biol Bull Russ Acad Sci 35, 279–286 (2008). https://doi.org/10.1134/S1062359008030084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359008030084

Keywords

Navigation