Skip to main content
Log in

Voltammetric evaluation of the antioxidant capacity of tea on electrodes modified with multi-walled carbon nanotubes

  • Articles
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The characteristics of the voltammograms of tea polyphenols on a glassy carbon electrode modified with multi-walled carbon nanotubes (MCNT-GCE) were evaluated. With the use of atomic force microscopy, it was found that MCNTs are oriented as rows 0.8–1.0 μm wide with alternating hills to 586 nm in height. Polyphenols other than of tannin are reversibly oxidized at the first step. Corresponding electrode reaction schemes are proposed. A voltammetric procedure for the estimation of the antioxidant capacity (AOC) of tea based on the oxidation of its polyphenol compounds was developed. The voltammograms of tea exhibited clearly defined peaks and oxidation steps whose potentials depend on the type of tea. The area of oxidation peaks was chosen as the parameter that characterizes antioxidant properties. The AOC of tea was expressed in terms of catechin equivalents per 100 mL of a beverage. 27 tea samples were analyzed. It was found that the AOC of green tea is 79% higher than that of black tea (290 ± 40 and 54 ± 22 mg/100 mL, respectively, P < 0.05). The AOC of oolong tea (70 ± 5 mg/100 mL) is considerably lower than that of green tea and statistically insignificantly higher than that of black tea. The AOC of white tea is comparable with the AOC of green tea (255 ± 11 and 290 ± 40 mg/100 mL, respectively, P > 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weisburger, J.H., Cancer Lett., 1997, vol. 114, nos. 1–2, p. 315.

    Article  CAS  Google Scholar 

  2. McKay, D.L. and Blumberg, J.B., J. Am. Coll. Nutr., 2002, vol. 21, no. 1, p. 1.

    CAS  Google Scholar 

  3. Kris-Etherton, P.M. and Keen, C.L., Curr. Opin. Lipidol., 2002, vol. 13, no. 1, p. 41.

    Article  CAS  Google Scholar 

  4. Barbosa, D.S., J. Verbr. Lebensm., 2007, vol. 2, no. 4, p. 407.

    Article  CAS  Google Scholar 

  5. Wiseman, S.A., Balentine, D.A., and Frei, B., Crit. Rev. Food Sci. Nutr., 1997, vol. 37, no. 8, p. 705.

    Article  CAS  Google Scholar 

  6. Tea and Tea Products: Chemistry and Health-Promoting Properties, Ho, C.-T., Lin, J.-K., and Shahidi, F., Eds., Boca Raton: CRC Press, 2008.

    Google Scholar 

  7. Abdullin, I.F., Turova, E.N., and Budnikov, G.K., J. Anal. Chem., 2001, vol. 56, no. 6, p. 557.

    Article  CAS  Google Scholar 

  8. Ziyatdinova, G., Nizamova, A., and Budnikov, H., Food Anal. Meth., 2011, vol. 4, no. 3, p. 334.

    Article  Google Scholar 

  9. Ziyatdinova, G.K., Nizamova, A.M., and Budnikov, H.C., Butlerovskie Soobshcheniya, 2011, vol. 24, no. 4, p. 72.

    Google Scholar 

  10. Brainina, Kh.Z., Ivanova, A.V., Sharafutdinova, E.N., Lozovskaya, E.L., and Shkarina, E.I., Talanta, 2007, vol. 71, no. 1, p. 13.

    Article  CAS  Google Scholar 

  11. Kilmartin, P.A. and Hsu, C.F., Food Chem., 2003, vol. 82, no. 4, p. 501.

    Article  CAS  Google Scholar 

  12. Roginsky, V., Barsukova, T., Hsu, C.F., and Kilmartin, P.A., J. Agric. Food Chem., 2003, vol. 51, no. 19, p. 5798.

    Article  CAS  Google Scholar 

  13. Milardovic, S., Ivekovic, D., and Grabaric, B.S., Bioelectrochemistry, 2006, vol. 68, no. 2, p. 175.

    Article  CAS  Google Scholar 

  14. Novak, I., Šeruga, M., and Komorsky-Lovrić, Š., Food Chem., 2010, vol. 122, no. 4, p. 1283.

    Article  CAS  Google Scholar 

  15. Korotkova, E.I., Karbainov, Y.A., and Shevchuk, A.V., J. Electroanal. Chem., 2002, vol. 518, no. 1, p. 56.

    Article  CAS  Google Scholar 

  16. Dall’Orto, V.C., Vago, J.M., Carballo, R.R., and Rezzano, I., Anal. Lett., 2005, vol. 38, no. 1, p. 19.

    Article  Google Scholar 

  17. Rawal, R., Chawla, S., and Pundir, C.S., Anal. Biochem., 2011, vol. 419, no. 2, p. 196.

    Article  CAS  Google Scholar 

  18. Mello, L.D., Alves, A.A., Macedo, D.V., and Kubota, L.T., Food Chem., 2005, vol. 92, no. 3, p. 515.

    Article  CAS  Google Scholar 

  19. Zapp, E., Brondani, D., Vieira, I.C., Dupont, J., and Scheerenb, C.W., Electroanalysis, 2011, vol. 23, no. 5, p. 1124.

    Article  CAS  Google Scholar 

  20. Guo, D., Zheng, D., Mo, G., and Ye, J., Electroanalysis, 2009, vol. 21, no. 6, p. 762.

    Article  CAS  Google Scholar 

  21. Komorsky-Lovrić, Š. and Novak, I., Collect. Czech. Chem. Commun., 2009, vol. 74, no. 10, p. 1467.

    Article  Google Scholar 

  22. Ziyatdinova, G., Gainetdinova, A., Morozov, M., Budnikov, H., Grazhulene, S., and Red’kin, A., J. Solid State Electrochem., 2012, vol. 16, no. 1, p. 127.

    Article  CAS  Google Scholar 

  23. Ziyatdinova, G., Aytuganova, I., Nizamova, A., Morozov, M., and Budnikov, H., Collect. Czech. Chem. Commun., 2011, vol. 76, no. 12, p. 1619.

    Article  CAS  Google Scholar 

  24. Yakovleva, K.E., Kurzeev, S.A., Stepanova, E.V., Fedorova, T.V., Kuznetsov, B.A., and Koroleva, O.V., Appl. Biochem. Microbiol., 2007, vol. 43, no. 6, p. 661.

    Article  CAS  Google Scholar 

  25. Abdel-Hamid, R. and Newair, E.F., J. Electroanal. Chem., 2011, vol. 657, p. 107.

    Article  CAS  Google Scholar 

  26. Bhagwat, S., Beecher, G.R., Haytowitz, D.B., Holden, J.M., Dwyer, J., Peterson, J., Gebhardt, S.E., Eldridge, A.L., Agarwal, S., and Balentine, D.A., Abstracts of Papers, IFT Annual Meet. Food Expo, Chicago, 2006, p. 459.

  27. Nizamova, A.M., Ziyatdinova, G.K., and Budnikov, G.K., J. Analyt. Chem., 2011, vol. 66, no. 3, p. 301.

    Article  CAS  Google Scholar 

  28. Lu, Y., Yu, L., and Carpenter, F.R., The Classic of Tea: Origins & Rituals, New York: Ecco Press, 1995.

    Google Scholar 

  29. Henning, S.M., Fajardo-Lira, C., Lee, H.W., Youssefian, A.A., Go, V.L.W., and Heber, D., Nutrition and Cancer, 2003, vol. 45, no. 2, p. 226.

    Article  CAS  Google Scholar 

  30. Dou, J., Lee, V.S., Tzen, J.T., and Lee, M.R., J. Agric. Food Chem., 2007, vol. 55, no. 18, p. 7462.

    Article  CAS  Google Scholar 

  31. Handbook of Food and Beverage Fermentation Technology, Hui, Y.N., Meunier-Goddik, L., Hansen, A.S., Josephsen, J., Nip, W.-K., Stanfield, P.S., and Toldra, F., Eds., New York-Basel: Marcel Dekker, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.K. Ziyatdinova, A.M. Nizamova, I.I. Aytuganova, H.C. Budnikov, 2013, published in Zhurnal Analiticheskoi Khimii, 2013, Vol. 68, No. 2, pp. 145–152.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziyatdinova, G.K., Nizamova, A.M., Aytuganova, I.I. et al. Voltammetric evaluation of the antioxidant capacity of tea on electrodes modified with multi-walled carbon nanotubes. J Anal Chem 68, 132–139 (2013). https://doi.org/10.1134/S1061934813020172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934813020172

Keywords

Navigation