Skip to main content
Log in

Surface tension of cavitation pockets according to data of computer simulation of nucleation in a stretched fluid

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Surface tension γ and effective radius R of critical cavitation pockets in a stretched Lennard-Jones fluid have been determined from the data on pocket formation work W *. The W * value has been calculated in terms of the stationary homogeneous nucleation theory from the results of molecular dynamics simulation of the parameters of cavitation process in a range of reduced temperatures T* = k B T/ɛ = 0.35–0.8. The calculated data have been approximated by the extended Tolman equation, which, in addition to linear correction (∼δ/R), takes into account the quadratic correction (∼l 2/R 2) for curvature to the surface tension of a critical pocket. It has been shown that parameter δ is negative and amounts to a few tenths of an atom diameter, with the value of l being substantially dependent on temperature and reaching the diameter of a Lennard-Jones atom at the upper boundary of the considered temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibbs, J.W., Thermodynamics. Statistical Mechanics, New York: Longmans and Green, 1928.

    Google Scholar 

  2. Tolman, R.S., J. Chem. Phys., 1949, vol. 17, p. 118.

    Article  CAS  Google Scholar 

  3. Skripov, V.P., Metastabil’naya zhidkost’ (Metastable Liquid), Moscow: Nauka, 1972.

    Google Scholar 

  4. Rusanov, A.I., Fazovye ravnovesiya i poverkhnostnye yavleniya (Phase Equilibria and Surface Phenomena), Leningrad: Khimiya, 1967.

    Google Scholar 

  5. Baidakov, V.G. and Boltachev, G.Sh., Zh. Fiz. Khim., 1995, vol. 69, p. 515.

    CAS  Google Scholar 

  6. Baidakov, V.G., Explosive Boiling of Superheated Cryogenic Liquids, Weinheim: Wiley, 2007.

    Book  Google Scholar 

  7. Ono, S. and Kondo, S., Molecular Theory of Surface Tension in Liquids, Berlin: Springer, 1960.

    Google Scholar 

  8. Schofield, P. and Henderson, J.R., Proc. R. Soc. London A, 1982, vol. 379, p. 231.

    Article  Google Scholar 

  9. Baidakov, V.G. and Boltachev, G.Sh., J. Chem. Phys., 2004, vol. 121, p. 8594.

    Article  CAS  Google Scholar 

  10. Baidakov, V.G. and Boltachev, G.Sh., Dokl. Akad. Nauk, 1998, vol. 363, p. 753.

    CAS  Google Scholar 

  11. Baidakov, V.G, Protsenko, S.P., and Gorbatovskaya, G.G., Colloid J., 2009, vol. 71, p. 437.

    Article  CAS  Google Scholar 

  12. Block, B.J., Das, S.K., Oettel, M., Virnau, P., and Binder, K., J. Chem. Phys., 2010, vol. 133, p. 154702.

    Article  Google Scholar 

  13. Koga, K., Zeng, X.C., and Shchekin, A.K., J. Chem. Phys., 1998, vol. 109, p. 4063.

    Article  CAS  Google Scholar 

  14. Bykov, T.B. and Shchekin, A.K., Colloid J., 1999, vol. 61, p. 144.

    CAS  Google Scholar 

  15. Haye, M.J. and Bruin, C., J. Chem. Phys., 1994, vol. 100, p. 556.

    Article  CAS  Google Scholar 

  16. Van Giessen, A.E. and Blokhuis, E.M., J. Chem. Phys., 2009, vol. 131, p. 164705.

    Article  Google Scholar 

  17. Samodurov, A.V., Vosel’, S.V., Baklanov, A.M., Onishchuk, A.A., and Karasev, V.V., Colloid J., 2013, vol. 75, p. 397.

    Article  CAS  Google Scholar 

  18. Kanel’, G.I., Fortov, V.E., and Razorenov, S.V., Usp. Fiz. Nauk, 2007, vol. 177, p. 809.

    Article  Google Scholar 

  19. Vinogradov, V.E., Pavlov, P.A., and Baidakov, V.G., J. Chem. Phys., 2008, vol. 128, p. 234508.

    Article  CAS  Google Scholar 

  20. Frenkel, D. and Smit, B., Understanding Molecular Simulation: From Algorithms to Applications, San Diego: Academic, 2002.

    Google Scholar 

  21. Baidakov, V.G., Tipeev, A.O., Bobrov, K.S., and Ionov, G.V., J. Chem. Phys., 2010, vol. 132, p. 234505.

    Article  Google Scholar 

  22. Baidakov, V.G. and Tipeev, A.O., Thermochim. Acta, 2011, vol. 522, p. 14.

    Article  CAS  Google Scholar 

  23. Baidakov, V.G. and Protsenko, S.P., Phys. Rev. Lett., 2005, vol. 95, p. 0157011.

    Article  Google Scholar 

  24. Baidakov, V.G., Protsenko, S.P., and Kozlova, Z.R., Fluid Phase Equilib., 2008, vol. 263, p. 55.

    Article  CAS  Google Scholar 

  25. Baidakov, V.G. and Protsenko, S.P., Zh. Eksp. Teor. Fiz., 2006, vol. 130, p. 1014.

    Google Scholar 

  26. Kinjo, T. and Matsumoto, M., Fluid Phase Equilib., 1998, vol. 144, p. 343.

    Article  CAS  Google Scholar 

  27. Baidakov, V.G. and Protsenko, S.P., Dokl. Akad. Nauk, 2005, vol. 402, p. 754.

    Google Scholar 

  28. Sekine, M., Yasuoka, K., Kinjo, T., and Matsumoto, M., Fluid Dyn. Res., 2008, vol. 40, p. 597.

    Article  Google Scholar 

  29. Kuksin, A.Yu., Norman, G.E., Pisarev, V.V., Stegailov, V.V., and Yanilkin, A.V., Phys. Rev. B: Condens. Matter, 2010, vol. 82, p. 174101.

    Article  Google Scholar 

  30. Lifshitz, E.M. and Pitaevskii, L.P., Physical Kinetics, New York: Pergamon, 1981.

    Google Scholar 

  31. Wedekind, J., Strey, R., and Reguera, D., J. Chem. Phys., 2007, vol. 126, p. 134103.

    Article  Google Scholar 

  32. Auer, S. and Frenkel, D., J. Chem. Phys., 2004, vol. 120, p. 3015.

    Article  CAS  Google Scholar 

  33. Baidakov, V.G., Protsenko, S.P., Kozlova, Z.R., and Chernykh, G.G., J. Chem. Phys., 2007, vol. 126, p. 214505.

    Article  CAS  Google Scholar 

  34. Blokhuis, E.M. and Van Giessen, A.E., J. Phys.: Condens. Matter, 2013, vol. 25, p. 255003.

    Google Scholar 

  35. Baidakov, V.G. and Boltachev, G.Sh., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1999, vol. 59, p. 469.

    Article  CAS  Google Scholar 

  36. Horsch, M., Vrabec, J., and Hasse, H., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2002, vol. 116, p. 302.

    Google Scholar 

  37. Zykova-Timan, T., Valeriani, C., Sanz, E., Frenkel, D., and Tosatti, E., Phys. Rev. Lett., 2008, vol. 100, p. 036103.

    Article  CAS  Google Scholar 

  38. McCraw, R. and Laaksonen, A., Phys. Rev. Lett., 1996, vol. 76, p. 2754.

    Article  Google Scholar 

  39. ten Wolde, P.R. and Frenkel, D., J. Chem. Phys., 1998, vol. 109, p. 9901.

    Article  Google Scholar 

  40. Sampayo, J.G., Malijevsky, A., Müller, E.A., De Miguel, E., and Jackson, G., J. Chem. Phys., 2010, vol. 132, p. 141101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Baidakov.

Additional information

Original Russian Text © V.G. Baidakov, 2015, published in Kolloidnyi Zhurnal, 2015, Vol. 77, No. 2, pp. 127–133.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baidakov, V.G. Surface tension of cavitation pockets according to data of computer simulation of nucleation in a stretched fluid. Colloid J 77, 119–124 (2015). https://doi.org/10.1134/S1061933X15020027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X15020027

Keywords

Navigation