Skip to main content
Log in

Asymptotic behavior of the Maupertuis action on a libration and tunneling in a double well

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper is devoted to an asymptotic formula for splitting of the lowest eigenvalues of a two-dimensional Schrödinger operator with a potential having two symmetric wells. We rigorously prove the corresponding formula, obtained earlier in a paper by J. Brüning, S. Yu. Dobrokhotov, and E. S. Semenov [“Unstable Closed Trajectories, Librations and Splitting of the Lowest Eigenvalues in Quantum Double Well Problem,” Regul. Chaotic Dyn. 11 (2), 167–180 (2006)] at the physical level of rigor. The crucial role in our considerations is played by an asymptotic formula for the Maupertuis action (as a function of energy) on a periodic trajectory of the classical system (a libration) lying near a doubly asymptotic trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Polyakov, “Quark Confinement and Topology of Gauge Theories,” Nuclear. Phys. B. 120, 429–458 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  2. E. Gildener and A. Patrascioiu, “Pseudoparticle Contributions to the Energy Spectrum of a One-Dimensional System,” Phys. Rev. D. 16, 425–443 (1977).

    ADS  Google Scholar 

  3. S. Coleman, The Uses of Instantons, The Whys of Subnuclear Physics (Proc. 1977 International School of Subnuclear Physics, Erice, A. Zichichi, ed., 1979).

  4. E. Harrell, “On the Rate of Asymptotic Eigenvalue Degeneracy,” Comm. Math. Phys. 60(1), 73–95 (1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. E. Harrell, “Double Wells,” Comm. Math. Phys. 75(3), 239–261 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. G. Jona-Lasinio, F. Martinelli, and E. Scoppola, “New Approach to the Semiclassical Limit of Quantum Mechanics. I. Multiple Tunnelings in One Dimension,” Comm. Math. Phys. 80(2), 223–254 (1981).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. J. M. Combes, P. Duclos, and R. Seiler, “Krein’s Formula and One-Dimensional Multiple-Well,” J. Funct. Anal. 52(2), 257–301 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Simon, “Semiclassical Analysis of Low Lying Eigenvalues. II. Tunneling,” Ann. of Math. 120(1), 89–118 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Helffer and J. Sjöstrand, “Multiple Wells in the Semiclassical Limit. I,” Comm. Partial Differential Equations 9(4), 337–408 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Helffer and J. Sjöstrand, “Puits Multiples en limite semi-classique. II. Interaction moléculaire. Symétries. Perturbation,” Ann. Inst. H. Poincaré. Phys. Théor. 42(2), 127–212 (1985).

    MATH  Google Scholar 

  11. V. P. Maslov, “Global Exponential Asymptotic Behavior of Solutions of the Tunnel Equations and the Problem of Large Deviations,” Trudy Mat. Inst. Steklova 163, 150–180 (1984) [in Russian].

    ADS  MATH  Google Scholar 

  12. B. Helffer, Semi-Classical Analysis for the Schrödinger Operator and Applications, Lect. Notes. Math. 1336 (Springer, Berlin, 1988).

    MATH  Google Scholar 

  13. S. Yu. Slavyanov, “The Asymptotic Behavior of Singular Sturm-Liouville Problems with Respect to a Large Parameter in the Case of Nearby Transition Points,” Differ. Uravn. 5(2), 313–325 (1969) [in Russian].

    Google Scholar 

  14. T. F. Pankratova, “Quasimodes and Splitting of Eigenvalues,” Dokl. Akad. Nauk SSSR 276(4), 795–799 (1984) [Soviet Math. Dokl. 29 (3), 597–601 (1984)].

    MathSciNet  Google Scholar 

  15. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Non-Relativistic Theory) (Izdat. “Nauka”, Moscow, 1974; Pergamon, Oxford Press, 1977).

    Google Scholar 

  16. M. V. Fedoryuk [Fedorjuk], “Asymptotics of the Discrete Spectrum of the Operator w″(x)λ 2 p(x)w(x),” (Russian) Mat. Sb. (N.S.) 68(110) (1), 81–110 (1965) [in Russian].

    MathSciNet  Google Scholar 

  17. S. Yu. Dobrokhotov, V. N. Kolokol’tsov, and V. P. Maslov, “Splitting of the Low Energy Levels of the Schrödinger Equation, and the Asymptotic Behavior of the Fundamental Solution of the Equation \(hu_t = \tfrac{1} {2}h^2 \Delta u - V(x)u\),” Teoret. Mat. Fiz. 87(3), 323–375 (1991) [Theoret. and Math. Phys. 87 (3), 561–599 (1991)].

    MathSciNet  Google Scholar 

  18. S. Yu. Dobrokhotov and V. N. Kolokol’tsov, “On the Amplitude of the Splitting of Lower Energy Levels of the Schrödinger Operator with Two Symmetric Wells,” Teoret. Mat. Fiz. 94(3), 426–434 (1993) [Theoret. and Math. Phys. 94 (3), 300–305 (1993)].

    MathSciNet  Google Scholar 

  19. S. Albeverio, S. Yu. Dobrokhotov, and E. S. Semenov, “On Formulas for Splitting the Upper and Lower Energy Levels of the One-Dimensional Schrödinger Operator,” Teoret. Mat. Fiz. 138(1), 116–126 (2004) [Theoret. and Math. Phys. 138 (1), 98–106 (2004)]; a correction: Teoret. Mat. Fiz. 141 (3), 485 (2004) [Theoret. and Math. Phys. 141 (3), 1750 (2004)].

    MathSciNet  Google Scholar 

  20. J. Brüning, S. Yu. Dobrokhotov, and E. S. Semenov, “Unstable Closed Trajectories, Librations and Splitting of the Lowest Eigenvalues in Quantum Double Well Problem,” Regul. Chaotic Dyn. 11(2), 167–180 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. S. V. Bolotin, “Libration Motions of Natural Dynamical Systems,” Vestnik Moskov. Univ. Ser. I Mat. Mekh. 6, 72–77 (1978) [Moscow Univ. Math. Bull. 33, 49–53 (1978)].

    MathSciNet  Google Scholar 

  22. V. I. Arnol’d, V. V. Kozlov, and A. I. Nejshtadt, “Mathematical Aspects of Classical and Celestial Mechanics,” Dynamical Systems III. Series: Encyclopaedia of Mathematical Sciences 3, (2006), Springer.

  23. S. V. Bolotin and P. H. Rabinowitz, “A Variational Construction of Chaotic Trajectories for a Reversible Hamiltonian System,” J. Differential Equations 148, 364–387 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  24. L. P. Shil’nikov, “On a Poincaré-Birkhoff Problem,” Mat. Sb. 74, 378–397 (1967) [Math. USSR Sbornik. 3, 353–371 (1967)].

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anikin, A.Y. Asymptotic behavior of the Maupertuis action on a libration and tunneling in a double well. Russ. J. Math. Phys. 20, 1–10 (2013). https://doi.org/10.1134/S1061920813010019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920813010019

Keywords

Navigation