Skip to main content
Log in

Probability theory for random variables with unboundedly growing values and its applications

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Il y a quelque choseà faire. (French proverb)

Abstract

We develop the unbounded probability theory on the basis of Kolmogorov complexity and show its connections to thermodynamics, economics, and its role in the study of the Web.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Poincaré, On Science(Izd. Nauka, Moscow, 1983) [in Russian] (Russian translation of the books Science et Hypothèse, Valeur de la Science, Science et Méthode, Derniéres Pensées).

    MATH  Google Scholar 

  2. A. A. Guseinov, Great Prophets and Thinkers, Ethical Studies from Moses to the Present Day (Moscow, Veche Editions, 2009).

    Google Scholar 

  3. V. V. Kozlov, “Kinetics of Collision less Gas: Equalization of Temperature, Growth of the Coarse-Grained Entropy and the Gibbs Paradox,” Regul. Chaotic Dyn. 14(4–5), 535–540 (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. V. P. Maslov, “Solution of the Gibbs Paradox in the Frame Work of Classical Mechanics (Statistical Physics) and Crystallization of the Gas C 60,” Mat. Zametki 83(5), 787–791 (2008) [Math. Notes 83 (5–6), 716–722 (2008)].

    MathSciNet  Google Scholar 

  5. V. P. Maslov, “Solution of the Gibbs Paradox Using the Notion of Entropy as a Function of Fractal Dimension”, Russ. J. Math. Phys. 17(3), 251–261 (2010).

    Article  MathSciNet  Google Scholar 

  6. V. P. Maslov, “Gibbs Paradox, Liquid Phase as an Alternative to the Bose Condensate, and Homogeneous Mixtures of New Ideal Gases,” Math. Notes, 89(3), 366–373 (2011).

    Article  MATH  Google Scholar 

  7. V. P. Maslov, “Critical Exponents as the Wiener Quantization of Thermodynamics,” Teoret. Mat. Fiz. 170(3), 458–470 (2012) [in Russian].

    Article  Google Scholar 

  8. V. P. Maslov, “Degeneration in the Transition from the Discrete Spectrum to the Continuous One and the Transition from Quantum Mechanics to Classical Mechanics,” Dokl. Akad. Nauk SSSR 114(5), 957–960 (1957) [in Russian].

    MathSciNet  MATH  Google Scholar 

  9. T. V. Maslova, “A Refinement of the Zipf Law for Frequency Dictionaries,” NTI Ser. 2 37(11), (2006) [Scientific and Technical Information Processing (11), (2006)].

  10. P. Erdős, and J. Lehner, “The Distribution of the Number of Summands in the Partitions of a Positive Integer,” Duke Math. J. 8(2), 335–345 (1941).

    Article  MathSciNet  Google Scholar 

  11. V. P. Maslov, “Unbounded Probability Theory Compatible with the Probability Theory of Numbers,” Math. Notes 91(5), 603–609 (2012).

    Article  Google Scholar 

  12. V. P. Maslov, “Bose Condensate in the D-Dimensional Case, in Particular, for D = 2,” Russ. J. Math. Phys. 19(3), 317–323 (2012).

    Article  Google Scholar 

  13. L. D. Landau, and E. M. Lifshits, Statistical Physics (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  14. V. P. Maslov, Zeno-line, Binodal, T − ρ Diagram and Clusters as a new Bose-Condensate Bases on New Global Distributions in Number Theory (arXiv:1007.4182v3 [math-ph], 2010).

  15. K. Davitt, E. Rolley, F. Caupin, A. Arvengas, and S. Balibar, “Equation of State of Water Under Negative Pressure,” J. Chem. Phys. 133(174507), 1–8 (2010).

    Google Scholar 

  16. V. G. Baidakov, and S. P. Protsenko, “Singular Point of a System of Lennard-Jones Particles at Negative Pressures,” Phys. Rev. Lett. 95(1.015701), (2005).

  17. K. I. Shmulovich, and L. Mercury, “Geochemical Processes at Negative Pressures,” Electronic Scientific Information Journal “Herald of the Departure of Earth Sciences RAS” 1(24), 1–3 (2006).

    Google Scholar 

  18. L. P. Filippov, Law of Corresponding States (Izd. Moskov. Univ., Moscow, 1983) [in Russian].

    Google Scholar 

  19. E. M. Apfelbaum, and V. S. Vorob’ev, “Correspondence between the Critical and the Zeno-Line Parameters for Classical and Quantum Liquids,” J. Phys. Chem. B, 113(11), 3521–3526 (2009).

    Article  Google Scholar 

  20. E. M. Apfelbaum, and V. S. Vorob’ev, “The Confirmation of the Critical Point-Zeno-Line Similarity Set from the Numerical Modeling Data for Different Interatomic Potentials,” J. Phys. Chem. 130(21), (1–10) (2009).

  21. V. P. Maslov and V. V. V’yugin, “Variational Problems for Additive Loss Functions and Kolmogorov Complexity,” Dokl. Ross. Akad. Nauk 390(5), 595–598 (2003) [Russian Acad. Sci. Dokl. Math. 67 (3), 404–407 (2003)].

    MathSciNet  Google Scholar 

  22. V. P. Maslov and V. V. Vyugin, “Concentration Theorems for Entropy and Free Energy,” Problemy Peredachi Informatsii 41(2), 72–88 (2005) [Probl. Inf. Transm. 41 (2), 134–149 (2005)].

    MathSciNet  Google Scholar 

  23. L. P. Filippov, Law of Corresponding States (Izd. Moskov. Univ., Moscow, 1983) [in Russian].

    Google Scholar 

  24. V. P. Maslov, “New Probability Theory Compatible with the New Conception of Modern Thermodynamics. Economics and Crisis of Debts,” Russ. J. Math. Phys. 19(1), 63–100 (2012).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was partially supported by the RFBR grant 11-01-12058_ofi_m.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maslov, V.P., Maslova, T.V. Probability theory for random variables with unboundedly growing values and its applications. Russ. J. Math. Phys. 19, 324–339 (2012). https://doi.org/10.1134/S1061920812030065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920812030065

Keywords

Navigation