Skip to main content
Log in

On the genus two free energies for semisimple Frobenius manifolds

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

We represent the genus two free energy of an arbitrary semisimple Frobenius manifold as the sum of contributions associated with dual graphs of certain stable algebraic curves of genus two plus the so-called “genus two G-function.” Conjecturally, the genus two G-function vanishes for a series of important examples of Frobenius manifolds associated with simple singularities, as well as for ℙ1-orbifolds with positive Euler characteristics. We explain the reasons for the conjecture and prove it in particular cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Dubrovin, Geometry of 2D Topological Field Theories, Integrable Systems and Quantum Groups (Montecatini Terme, 120–348 1993; Lecture Notes in Math., 1620; Springer, Berlin, 1996).

    Google Scholar 

  2. B. Dubrovin, and Y. Zhang, “Extended Affine Weyl Groups and Frobenius Manifolds,” Comp. Math. 111, 167–219 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Dubrovin, and Y. Zhang, “Bi-Hamiltonian Hierarchies in 2D TFT at One-Loop Approximation,” Comm. Math. Phys. 198(2), 311–361 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. B. Dubrovin, and Y. Zhang, “Frobenius Manifolds and Virasoro Constraints,” Sel. Math., New ser. 5, 423–466 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Dubrovin, and Y. Zhang, “Normal Forms of Integrable PDEs, Frobenius Manifolds and Gromov-Witten Invariants,” arXiv: math/0108160.

  6. B. Dubrovin, S.-Q. Liu, and Y. Zhang Frobenius “Manifolds and Central Invariants for the Drinfeld — Sokolov Bihamiltonian Structures,” Adv. Math. 219, 780–837 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Dubrovin, S.-Q. Liu, and Y. Zhang, “Integrable Hierarchies of Topological Type,” to appear.

  8. T. Eguchi, and C.-S. Xiong, “Quantum Cohomology at Higher Genus: Topological Recursion Relation,” Adv. Theor. Math. Phys. 2, 219–229 (1998).

    MathSciNet  MATH  Google Scholar 

  9. T. Eguchi, Y. Yamada, and S.-K. Yang, “On the Genus Expansion in the Topological String Theory,” Rev. Math. Phys. 7, 279–309 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Eguchi, E. Getzler, and C.-S. Xiong, “Topological Gravity in Genus 2 with Two Primary Fields,” Adv. Theor. Math. Phys. 4, 981–998 (2000); Erratum ibid. 5, 211–212 (2001).

    MathSciNet  MATH  Google Scholar 

  11. C. Faber, S. Shadrin, and D. Zvonkine, “Tautological Relations and the r-Spin Witten Conjecture,” arXiv:math/0612510.

  12. H. Fan, T. Jarvis, and Y. Ruan, “Geometry and Analysis of Spin Equations,” Comm. Pure Appl. Math. 61, 745–788 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Fan, T. Jarvis, and Y. Ruan, “The Witten Equation, Mirror Symmetry and Quantum Singularity Theory,” arXiv:0712.4021.

  14. H. Fan, T. Jarvis, and Y. Ruan, “The Witten Equation and Its Virtual Fundamental Cycle,” arXiv: math/0712.4025.

  15. H. Fan, T. Jarvis, E. Merrell, and Y. Ruan, “Witten’s D4 Integrable Hierarchies Conjecture,” arXiv:math/1008.0927.

  16. E. Getzler, The Jet-Space of a Frobenius Manifold and Higher-Genus Gromov-Witten Invariants, (Yu.I. Manin’s Festschrift), Aspects Math., E36 (Vieweg, Wiesbaden, 2004), pp. 45–89.

    Google Scholar 

  17. A.B. Givental, “Elliptic Gromov-Witten Invariants and the Generalized Mirror Conjecture, in Integrable Systems and Algebraic Geometry,” Proceedings of the Taniguchi Symposium 1997, eds. M. H. Saito, Y. Shimizu, and K. Ueno, World Scientific, 107–155 (1998).

  18. A.B. Givental and T..E. Milanov, “Simple Singularities and Integrable Hierarchies,” In: The Breadth of Symplectic and Poisson Geometry, Progr. Math. 232, 173–201 (2005).

    Article  MathSciNet  Google Scholar 

  19. C. Hertling, Frobenius Manifolds and Moduli Spaces for Singularities, (Cambridge University Press, Cambridge, 2002).

    Book  MATH  Google Scholar 

  20. Yu.I. Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, AMS Colloquium Publications 47 (Providence, Rhode Island, 1999).

    MATH  Google Scholar 

  21. T. E. Milanov, and H.-H. Tseng, “The Space of Laurent Polynomials, P1-Orbifolds, and Integrable Hierarchies,” J. Reine Angew. Math. 622, 189–235 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Rossi, Gromov-Witten Theory of Orbicurves, the Space of Tri-Polynomials and Symplectic Field Theory of Seifert Fibrations, eprint arXiv:0808.2626v3.

  23. K. Saito, “Period Mapping Associated to a Primitive Form,” Publ. RIMS 19, 1231–1264 (1983).

    Article  MATH  Google Scholar 

  24. I. A. B. Strachan, “Symmetries and Solutions of Getzler’s Equation for Coxeter and Extended Affine Weyl Frobenius Manifolds,” Int. Math. Res. Notices 19, 1035–1051 (2003).

    Article  MathSciNet  Google Scholar 

  25. A. Takahashi, “Weighted Projective Lines Associated to Regular Systems of Weights of Dual Type,” Adv. Stud. Pure Math. 59, 371–388 (Math. Soc. Japan, Tokyo, 2010).

    Google Scholar 

  26. E. Witten, “Algebraic Geometry Associated with Matrix Models of Two-Dimensional Gravity,” In: Topological Models in Modern Mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 235–269 (1993).

    Google Scholar 

  27. C.-Z. Wu, “Tau Functions and Virasoro Symmetries for Drinfeld-Sokolov Hierarchies,” arXiv:1203.5750.

Download references

Author information

Authors and Affiliations

Authors

Additional information

It also depends on the choice of the so-called calibration of the Frobenius manifold, i.e., on the choice of basis of horizontal sections of the deformed flat connection on M. See [5] for details.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubrovin, B., Liu, SQ. & Zhang, Y. On the genus two free energies for semisimple Frobenius manifolds. Russ. J. Math. Phys. 19, 273–298 (2012). https://doi.org/10.1134/S1061920812030028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920812030028

Keywords

Navigation