Skip to main content
Log in

A technique for identifying the initial stage of the extension of low-temperature creep cracks

  • Acoustic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

A technique that makes it possible to obtain the initial data for constructing growth diagrams for low-temperature creep cracks is proposed. This technique is based on the acoustic-emission method. It is shown that the application of this method makes it possible to efficiently reveal early stages in the extension of creep cracks in structural steels. Using the data of experiments performed with this technique, the value of the lower threshold stress-intensity factor was obtained for constructing the first region of the diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kovchik, S.E. and Morozov, E.M., Kharakteristiki kratkovremennoi treshchinostoikosti materialov i metody ikh opredeleniya. Mekhanika razrusheniya i prochnost’ materialov. V 4 t (Characteristics of Short-Term Crack Resistances of Materials and Methods for Their Determination. Fracture Mechanics and Strength of Materials. In 4 vols.), Kiev: Naukova dumka, 1988, vol. 3.

    Google Scholar 

  2. Garafalo, F., Fundamentals of Creep and Creep-Rupture in Metals, New York-London: MacMillan Company, 1970.

    Google Scholar 

  3. Nadai, A., Plastichnost’ i razrushenie tverdykh tel (Plasticity and Fracture of Solids), Moscow: Mir, 1969, vol. 2.

    Google Scholar 

  4. Jie, Zhao, Tao, Mo, and Defu, Nie, The occurrence of room-temperature creep in cracked 304 stainless steel specimens and its effect on crack growth behavior, Mater. Sci. Engin., 2008, vols. 483–484, pp. 572–575.

    Article  Google Scholar 

  5. Brust, F.W. and Leis, B.N., Primary-creep crack growth at room temperature in surface-cracked pipes, Int. J. Press. Vess. Piping, 1992, vol. 52, no. 2, pp. 273–298.

    Article  Google Scholar 

  6. Lepin, G.F., Polzuchest’ metallov i kriterii zharoprochnosti (Creep of Metals and Heat-Resistance Criteria), Moscow: Metallurgiya, 1976.

    Google Scholar 

  7. Taira, S. and Otani, R., Teoriya vysokotemperaturnoi prochnosti materialov (Theory of High-Temperature Strength of Materials), Moscow: Metallurgiya, 1986.

    Google Scholar 

  8. Srartsev, V.I., Low temperature creep of materials, Czechoslov. J. Phys. B, 1981, vol. 31, no. 2, pp. 115–124.

    Article  Google Scholar 

  9. Shibli, I.A., Low temperature (360°C) creep crack growth characteristics of a C-Mn steel, Mater. Sci. Engin. A, 1988, vol. 104, pp. 29–35.

    Article  Google Scholar 

  10. Mueller, F., Scholz, A., and Berger C., Comparison of different approaches for estimation of creep crack initiation, Engin. Failure Anal., 2007, vol. 14, no. 8, pp. 1574–1585.

    Article  Google Scholar 

  11. Pineau, A., Global and local approaches of creep crack initiation and growth, Mechan. Behav. Mat., 1988.

    Google Scholar 

  12. Andreikiv, O.E., Skal’skyi, V.R., Matviiv, Yu.Ya., and Kradinova, T.A., Evaluation of the durability of cracked plates under the conditions of long-term static loading and local creep, Mater. Sci., 2012, vol. 48, no. 1, pp. 36–45.

    Article  Google Scholar 

  13. Andreikiv, O.E., Skal’s’kyi, V.R., Matviiv, Yu.Ya., and Dolins’ka, I.Ya., Micromechanisms and a computational model of growth of low-temperature creep cracks in materials, Mater. Sci., 2013, vol. 49, no. 1, pp. 25–35.

    Article  Google Scholar 

  14. Raj, S.V. and Noebe, R.D., Low temperature creep of hot-extruded near-stoichiometric NiTi shape memory alloy. Part I: Isothermal creep, Mater. Sci. Engin. A, 2013, vol. 581, no. 1, pp. 145–153.

    Article  Google Scholar 

  15. Sreeramamurthy, Ankem, Zane W. Wyatt, and William Joost, Advances in low-temperature (<0.25T m) creep behavior of single and two-phase titanium alloys, Proc, Engineer., 2013, vol. 55, pp. 10–16.

    Article  Google Scholar 

  16. Oberson, P.G. and Ankem, S., The effect of time-dependent twinning on low temperature (<0.25 = T m) creep of an alpha-titanium alloy, Int. J. Plastic., 2009, vol. 25, no. 5, pp. 881–900.

    Article  Google Scholar 

  17. Tabuchi, M. and Kubo, K., Evaluation of creep crack growth rate in terms of creep fracture mechanism for 316 stainless steel, Adv. Fract. Res., 1997, pp. 399–406.

    Google Scholar 

  18. Fookes, A.J. and Smith, D.J., Using a strain based failure assessment diagram for creep-brittle materials, Int. J. Press. Vess. Piping, 2001, vol. 78, nos. 11–12, pp. 951–961.

    Article  Google Scholar 

  19. Skalskyi, V.R. and Koval, P.M., Some Methodological Aspects of Application of Acoustic Emission, Lviv: Publishing House Spolom, 2007.

    Google Scholar 

  20. Nazarchuk, Z.T. and Skal’skii, V.R., Akustiko-emissionnoe diagnostirovanie elementov konstruktsii: nauchnotekhnicheskoe posobie. V 3 t (Acoustic-Emission Diagnosing of Structural Elements: Scientific and Technical Manual. In 3 vols.), Kiev: Naukova dumka, 2009.

    Google Scholar 

  21. Druillard, T.F., Acoustic Emission. A Bibliography with Abstracts, New York: IFI. Plenum, 1979.

    Google Scholar 

  22. Acoustic Emission. ASTM Special Technical Publication 50., Baltimore, 1972.

  23. Novikov, N.V., Likhatskii, S.I., and Maistrenko, A.L., Determination of the crack initiation moment by the acoustic method in tests of specimens with notches for an eccentric tension, Probl. Prochn., 1973, no. 9, pp. 21–25.

    Google Scholar 

  24. Vainberg, V.E., Sosedov, V.N., and Kushnir, A.M., Investigation of the crack growth by the acoustic emission method, Defektoskopiya, 1975, no. 3, pp. 127–129.

    Google Scholar 

  25. Huang, M., Liang, J., Liaw, P.K., et al., Using acoustic emission in fatigue and fracture materials research, JOM, 1998, vol. 50, no. 11, pp. 1–12.

    Google Scholar 

  26. Magalhaes, A.G., and M.F.S.F. de Moura, Application of acoustic emission to study creep behavior of composite bonded lap shear joints, NDT & E International, 2005, vol. 38, no. 1, pp. 45–52.

    Article  Google Scholar 

  27. Chmelik, F., Luká, P., Janecek, M., et al., An evaluation of the creep characteristics of an AZ91 magnesium alloy composite using acoustic emission, Mater. Sci. Engin. A, 2002, vol. 338, no. 1, 2, pp. 1–7.

    Article  Google Scholar 

  28. Skal’skyi, V.R., Tolopko, Ya.D., Velikii, P.P., Galan, P.Ya., and Lyasota, I.N., A test machine for studying fatigue fracturing using the acoustic-emission method, Fizicheskie metody i sredstva kontrolya sred materialov i izdelii (seriya). Vyp. 14. Nerazrushayushchii kontrol’ materialov i konstruktsii: Sb. nauch. trudov (Physical Methods and Tools for Testing Media, Materials, and Articles (series). Nondestructive Testing of Materials and Structures. Collection of Transactions), Lvov: FMI im. G.V. Karpenko NAN Ukrainy, 2009, no. 14, pp. 43–49.

    Google Scholar 

  29. GOST (State Standard) 25.506-85 Strength Calculations and Tests. Methods of Mechanical Tests of Metals. Determination of the Crack-Resistance Characteristics (Fracture Toughness) under Static Loading.), Moscow: Izd. standartov, 1985.

  30. Skal’skii, V.R., Builo, S.I., and Stankevich, E.M., A criterion for evaluating the brittle fracturing of glass using acoustic emission signals, Russ. J. Nondestr. Test., 2012, no. 5, pp. 277–284.

    Google Scholar 

  31. Andreykiv, O.Ye., Lysak, M.V., Serhienko, O.M., and Skalsky, V.R., Analysis of acoustic emission caused by internal crack, Eng. Fract. Mech., 2001, Issue 11, vol. 68, no. 7, pp. 1317–1333.

    Article  Google Scholar 

  32. Skal’skii, V.R., Matviiv, Yu.Ya., and Kradinova, T.A., A technique for evaluation of the creep characteristics of materials, Mashinovedenie, 2011, nos. 9–10 (171–172), pp. 26–30.

    Google Scholar 

  33. Savruk, M.P., Koeffitsienty intensivnosti napryazhenii v telakh s treshchinami. Mekhanika razrusheniya i prochnost’ materialov. V 4 t. (Stress Intensity Coefficients in Objects with Cracks. Fracture Mechanics and Strength of Materials. In 4 vols.), Kiev: Naukova dumka, 1988, vol. 2.

    Google Scholar 

  34. GOST (State Standard) 3248-81. Metals. Creep Testing Methods, Moscow: Izd. standartov, 1988.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Skalskii.

Additional information

Original Russian Text © V.R. Skalskii, I.Ya. Dolinskaya, E.M. Stankevich, Yu.Ya. Matviiv, T.A. Kradinova, 2014, published in Defektoskopiya, 2014, Vol. 50, No. 9, pp. 50–59.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skalskii, V.R., Dolinskaya, I.Y., Stankevich, E.M. et al. A technique for identifying the initial stage of the extension of low-temperature creep cracks. Russ J Nondestruct Test 50, 539–547 (2014). https://doi.org/10.1134/S1061830914090071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830914090071

Keywords

Navigation