Skip to main content
Log in

Mechanism for the void formation in the bright spot of a fiber fuse

  • Interaction of Laser Radiation with Matter
  • Published:
Laser Physics

Abstract

A simple mechanism for the formation of a chain of voids (cavities) behind the spot of the laser optical discharge in an optical fiber is proposed. This mechanism is related to the motion of liquid in the opposite direction with respect to the propagation direction of the laser radiation between the isotherms that bound the charge-separation region and low-viscosity region. The motion is caused by the extrusion of the low-viscosity layer owing to the excessive pressure induced by the charge repulsion. The void shape (a bullet moving along the laser radiation) is determined by the isotherm sharpness. The bridge formation temperature (about 5000 K) is estimated based on the comparison of the extrusion velocity of the low-viscosity layer and the velocity of the bright spot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kashyap and K. J. Blow, Electron. Lett. 24(1), 47 (1988).

    ADS  Google Scholar 

  2. R. M. Atkins, P. G. Simpkins, and A. D. Yablon, “Track of Fiber Fuse: A Rayleigh Instability in Optical Waveguides,” Opt. Lett. 28, 974 (2003).

    Google Scholar 

  3. I. A. Bufetov, A. A. Frolov, E. M. Dianov, et al., “Dynamics of Fiber Fuse Propagation,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Anaheim, 2005 (Anaheim, 2005).

  4. S. Todoroki, “Ultrahigh-Speed Videography of Fiber Fuse Propagation: A Tool for Studying Void Formation,” in Proceedings of International Conference on Coherent and Nonlinear Optics (ICONO) and Lasers, Applications, and Technologies (LAT), St. Petersburg, Russia, 2005 (St. Petersburg, 2005).

  5. S. I. Yakovlenko, Kvantovaya Elektron. (Moscow) 34(8), 765 (2004) [Quantum Electron. 34, 787 (2004)].

    Google Scholar 

  6. E. Yurkov and S. I. Yakovlenko, Kratk. Soobshch. Fiz., No. 11, 21 (2004).

  7. E. Yurkov and S. I. Yakovlenko, Kratk. Soobshch. Fiz., No. 5 (2005).

  8. Lord Rayleigh, Nature 95, 66 (1915).

    Google Scholar 

  9. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford Univ. Press, Oxford, 1961).

    Google Scholar 

  10. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Nauka, Moscow, 1986; Pergamon Press, Oxford, 1987).

    Google Scholar 

  11. R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, Laser Phys. 14(11), 1429 (2004).

    Google Scholar 

  12. R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, Zh. Tekh. Fiz. 75(2), 94 (2005) [Tech. Phys. 50, 232 (2005)].

    Google Scholar 

  13. A. N. Tkachev and S. I. Yakovlenko, Kvantovaya Elektron. (Moscow) 34(8), 761 (2004) [Quantum Electron. 34, 761 (2004)].

    Google Scholar 

  14. D. P. Hand and P. St. J. Russel, Opt. Lett. 13(9), 767 (1988).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakovlenko, S.I. Mechanism for the void formation in the bright spot of a fiber fuse. Laser Phys. 16, 474–476 (2006). https://doi.org/10.1134/S1054660X0603008X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X0603008X

PACS numbers

Navigation