Skip to main content
Log in

Poynting’s effect of cylindrically anisotropic nano/microtubes

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The paper analyzes Poynting’s effect for chiral cylindrically anisotropic nano/microtubes of cubic, tetragonal and orthorhombic crystals. It is shown based on the solution of a problem on longitudinal tension and torsion of such tubes that there is a linear direct Poynting’s effect of tension of a tube in torsion and a linear reverse Poynting’s effect of torsion of a tube in tension. Vor nano/microtubes of cubic six-constant tetragonal and orthorhombic crystals both these effects disappear at a zero chiral angle and their dependence on the chiral angle is odd. Vor nano/microtubes of seven-constant tetragonal crystals both the effects are present at a zero chiral angle but disappear at certain nonzero values of the chiral angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poynting, J.H., On Pressure Perpendicular to the Shear Planes in Finite Pure Shears, and on the Lengthening on Loaded Wires When Twisted, Proc. Roy. Soc. Lond. A, 1909, vol. 82, no. 557, pp. 546–559.

    Article  ADS  MATH  Google Scholar 

  2. Lurie, A.I., Nonlinear Theory of Elasticity, Moscow: Nauka, 1980.

    MATH  Google Scholar 

  3. Goldstein, R.V., Gorodtsov, V.A., and Lisovenko, D.S., Linear Poynting’s Effect in Torsion and Extension of Curvilinearly Anisotropic Tubes, Dokl. Phys., 2015, vol. 60, no. 9, pp. 396–399

    Article  ADS  Google Scholar 

  4. Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S., and Volkov, M.A., Negative Poisson’s ratio for Six-Constant Tetragonal Nano/Microtubes, Phys. Status SolidiB, 2015, vol. 252, no. 7, pp. 1580–1586.

    Article  ADS  Google Scholar 

  5. Nye, J., Physical Properties of Crystals, Oxford: Oxford University Press, 1985.

    MATH  Google Scholar 

  6. Lekhnitskii, S.G., Theory of Elasticity of an Anisotropic Elastic Body, San Francisco: Holden-Day Inc., 1963.

    MATH  Google Scholar 

  7. Goldstein, R.V., Gorodtsov, V.A., Chentsov, A.V., Starikov, S.V., Stegailov, V.V., and Norman, G.E., Description of Mechanical Properties of Carbon Nanotubes. Tube Wall Thickness Problem. Size Effect. Part 1, Lett. Mater., 2011, vol. 1, no. 4, pp. 185–189.

    Google Scholar 

  8. Goldstein, R.V., Gorodtsov, V.A., Chentsov, A.V., Starikov, S.V., Stegailov, V.V., and Norman, G.E., Description of Mechanical Properties of Carbon Nanotubes. Tube Wall Thickness Problem. Size Effect. Part 2, Lett. Mater., 2011, vol. 1, no. 4, pp. 190–193.

    Google Scholar 

  9. Rao, C.N.R. and Nath, M., Inorganic Nanotubes, Dalton Trans., 2003, no. 1, pp. 1–24.

    Article  Google Scholar 

  10. Tenne, R., Inorganic Nanotubes and Fullerene-Like Nanoparticles, Nat. Nanotechn., 2006, vol. 1, pp. 103–111.

    Article  ADS  Google Scholar 

  11. Eletskii, A.V., Carbon Nanotubes and Their Emission Properties, Phys. Usp., 2002, vol. 45, no. 4, pp. 369–402.

    Article  ADS  Google Scholar 

  12. Schmidt, O.G. and Eberl, K., Thin Solid Films Roll up into Nanotubes, Nature, 2001, vol. 410, pp. 168.

    Article  ADS  Google Scholar 

  13. Schmidt, O.G., Schmarje, N., Deneke, C., Muller, C., and Jin-Phillipp, N.-Y., Three-Dimensional Nano-Objects Evolving from a Two-Dimensional Layer Technology, Adv. Mater., 2001, vol. 13, no. 10, pp. 756–759.

    Article  Google Scholar 

  14. Prinz, V.Ya., Seleznev, V.A., Gutakovsky, A.K., et al., Free-Standing and Overgrown InGaAs/GaAs Nanotubes, Nanohelicies and Their Arrays, Physica E, 2000, vol. 6, pp. 828–831.

    Article  ADS  Google Scholar 

  15. Golod, S.V., Prinz, V.Ya., Mashanov, V.I., and Gutakovsky, A.K., Fabrication of Conducting GeSi/Si Micro- and Nanotubes and Helical Microcoils, Semicond. Sci. Technol., 2001, vol. 16, pp. 181–185.

    Article  ADS  Google Scholar 

  16. Prinz, V.Ya., Three-Dimensional Self-Forming Nanostructures on the Basis of Free Stressed Heterofilms, Izv. Vyssh. Uch. Zaved. Fizika, 2003, vol. 46, no. 6, pp. 35–43.

    Google Scholar 

  17. Mei, Y., Huang, G., Solovev, A.A., Sanchez, S., Urena, E.B., Monch, I., Ding, F., Reindl, T., Fu, K.Y., Chu, P.K., and Schmidt, O.G., Versatile Approach for Integrative and Functionalized Tubes by Strain Engineering of Nanomembranes on Polymers, Adv. Mater., 2008, vol. 20, no. 21, pp. 4085–4090.

    Article  Google Scholar 

  18. Mey, Y., Solovev, A.A., Sanchez, S., and Schmidt, O.G., Rolled-up Nanotech on Polymers: from Basic Perception of Self Propelled Catalic Microengines, Chem. Soc. Rev., 2011, vol. 40, pp. 2109–2119.

    Article  Google Scholar 

  19. Sasin, M.E., Il’inskaya, N.D., Zadiranov, Yu.M., Kaliteevskaya, N.A., Lazarenko, A.A., Mazlin, V.A., Brunkov, P.N., Pavlov, S.I., and Kaliteevski, M.A., Cylindrical Multilayer Metal-Dielectric Structures, Tech. Phys. Lett., 2015, vol. 41, no. 11, pp. 1097–1098.

    Article  ADS  Google Scholar 

  20. Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S., and Volkov, M.A., Negative Poisson’s Ratio for Cubic Crystals and Nano/Microtubes, Phys. Mesomech., 2014, vol. 17, no. 2, pp. 97–115.

    Article  Google Scholar 

  21. Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology, New Series Group III: Crystal and Solid State Physics. Second and Higher Order Constants, W. Martienssen, Ed., Berlin: Springer, 1992, vol. 29a, pp. 11-188.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Goldstein.

Additional information

Original Russian Text © R.V. Goldstein, V.A. Gorodtsov, D.S. Lisovenko, 2016, published in Fizicheskaya Mezomekhanika, 2016, Vol. 19, No. 1, pp. 5-14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldstein, R.V., Gorodtsov, V.A. & Lisovenko, D.S. Poynting’s effect of cylindrically anisotropic nano/microtubes. Phys Mesomech 19, 229–238 (2016). https://doi.org/10.1134/S1029959916030012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959916030012

Keywords

Navigation