Skip to main content
Log in

Damage Mechanisms of Hierarchical Composites: Computational Modelling

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Computational studies of damage mechanisms in hierarchical composites, including biocomposites, nanoparticle reinforced polymer composites and other materials are discussed. Different methods of the analysis of hierarchical effects in the multiscale composites are demonstrated, among them, hierarchical fiber bundle model, 3D multiscale finite element models, analytical studies. Considering wood as a gradient, cellular material with layered composite cell walls, one analyzed the effect of wood structure on damage resistance of wood. The influence of nanoparticles distribution in unidirectional polymer matrix composites with secondary nanoreinforcement on the strength and damage resistance of the composites is demonstrated. The concept of nanostructuring of interfaces and grain boundaries as an important reserve of the improvement of the materials properties is formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fratzl, P. and Weinkamer, R., Nature’s Hierarchical Materials, Progr. Mater. Sci., 2007, vol. 52, no. 8, pp. 1263–1334.

    Article  Google Scholar 

  2. Gao, H., Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-Like Materials, Int. J. Fract., 2006, vol. 138, no. 1-4, pp. 101–137.

    Article  MATH  Google Scholar 

  3. Schmahl, W.W., Greisshaber, E., Merkel, C., Kelm, K., Deushle, J., Neuser, R.D., and Goetz, A.J., Hierarchical Fibre Composite Structure and Micromechanical Properties of Phosphatic and Calcitic Brachiopod Shell Biomaterials. An Overview, Miner. Mag., 2008, vol. 72, no. 2, pp. 541–562.

    Article  Google Scholar 

  4. Lakes, R., Materials with Structural Hierarchy, Nature, 1993, vol. 361, pp. 511–515.

    Article  ADS  Google Scholar 

  5. Mishnaevsky, L., Jr., Micromechanics of Hierarchical Materials: a Brief Overview, Rev. Adv. Mater. Sci., 2012, vol. 30, pp. 60–72.

    Google Scholar 

  6. Mishnaevsky, L., Jr., Computational Mesomechanics of Composites, Wiley, 2007.

    Google Scholar 

  7. Bekyarova, E., Thostenson, E.T., Yu, A., Kim, H., Gao, J., Tang, J., Hahn, H.T., Chou, T.-W., Itkis, M.E., and Haddon, R.C., Multiscale Carbon Nanotube-Carbon Fiber Reinforcement for Advanced Epoxy Composites, Langmuir, 2007, vol. 23, no. 7, pp. 3970–3974.

    Article  Google Scholar 

  8. Bekyarova, E., Thostenson, E.T., Yu, A., Itkis, M.E., Fakhrutdinov, D., Chou, T.-W., and Haddon, R.C. Functionalized Single-Walled Carbon Nanotubes for Carbon Fiber-Epoxy Composites, J. Phys. Chem. C, 2007, vol. 111, pp.17865–17871.

    Article  Google Scholar 

  9. Kanzaki, S., Shimada, M., Komeya, K., and Tsuge, A., Recent Progress in the Synergy Ceramics Project, Key Eng. Mater., 1999, vol. 161-163, pp. 437–442.

    Article  Google Scholar 

  10. Newman, W.I. and Gabrielov, A.M., Failure of Hierarchical Distributions of Fiber Bundles, Int. J. Fracture, 1991, vol. 50, no. 1, pp. 1–15.

    Google Scholar 

  11. Daniels, H.E., The Statistical Theory of the Strength of Bundles of Threads, Proc. Roy. Soc. Lond. A, 1945, vol. 183, no. 995, pp. 405–435.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Mishnaevsky, L., Jr., Hierarchical Composites: Analysis of Damage Evolution Based on Fiber Bundle Model, Compos. Sci. Technol., 2011, vol. 71, no. 4, pp. 450–460.

    Article  Google Scholar 

  13. Katti, K.S. and Katti, D.R., Why is Nacre So Tough and Strong? Mater. Sci. Eng. C, 2006, vol. 26, no. 8, pp. 1317–1324.

    Article  Google Scholar 

  14. Rhoa, J.-Y., Mechanical Properties of Hard Tissues, in Encyclopedia of Materials: Science and Technology, Jurgen Buschow, K.H., Ed., Amsterdam: Elsevier Ltd., pp. 3723–3728.

  15. Qing, H. and Mishnaevsky, L., Jr., 3D Hierarchical Computational Model of Wood as a Cellular Material with Fibril Reinforced, Heterogeneous Multiple Layers, Mech. Mater., 2009, vol. 41, no. 9, pp. 1034–1049.

    Article  Google Scholar 

  16. Qing, H. and Mishnaevsky, L., Jr., 3D Multiscale Micromechanical Model of Wood: From Annual Rings to Microfibrils, Int. J. Solids Struct., 2010, vol. 47, no. 9, pp. 1253–1267.

    Article  MATH  Google Scholar 

  17. Qing, H. and Mishnaevsky, L., Jr., 3D Constitutive Model of Anisotropic Damage for Unidirectional Ply Based on Physical Failure Mechanisms, Comput. Mater. Sci., 2010, vol. 50, no. 2, pp. 479–486.

    Article  Google Scholar 

  18. Qing, H. and Mishnaevsky, L., Jr., Fatigue Modeling of Materials with Complex Microstructures, Comput. Mater. Sci., 2011, vol. 50, no. 5, pp. 1644–1650.

    Article  Google Scholar 

  19. Godara, A., Mezzo, I., Luizi, F., Warrier, A., Lomov, S.V., van Vuure, A.W., Gorbatkin, L., Moldenaers, P., and Verpoest, I., Influence of Carbon Nanotube Reinforcement on the Processing and the Mechanical Behaviour of Carbon Fiber/Epoxy Composites, Carbon, 2009, vol. 47, no. 12, pp. 2914–2923.

    Article  Google Scholar 

  20. Dai, G.M. and Mishnaevsky, L., Jr., Fatigue of Multiscale Composites with Secondary Nanoplatelet Reinforcement: 3D Computational Analysis, Compos. Sci. Technol., 2014, vol. 91, pp. 71–81.

    Article  Google Scholar 

  21. Mishnaevsky, L., Jr. and Brondsted, P., Micromechanisms of Damage in Unidirectional Fiber Reinforced Composites: 3D Computational Analysis, Compos. Sci. Technol., 2009, vol. 69, no. 7-8, pp. 1036–1044.

    Article  Google Scholar 

  22. Qing, H. and Mishnaevsky, L., Jr., Unidirectional High Fiber Content Composites: Automatic 3D FE Model Generation and Damage Simulation, Comput. Mater. Sci., 2009, vol. 47, no. 2, pp. 548–555.

    Article  Google Scholar 

  23. Wang, H.W., Zhou, H.W., Peng, R.D., and Mishnaevsky, L., Jr., Nanoreinforced Polymer Composites: 3D FEM Modeling with Effective Interface Concept, Compos. Sci. Technol., 2011, vol. 71, no. 7, pp. 980–988.

    Article  Google Scholar 

  24. Mishnaevsky, L., Jr. and Dai, G.M., Hybrid Carbon/Glass Fiber Composites: Micromechanical Analysis of Structure-Damage Resistance Relationship, Comp. Mater. Sci., 2014, vol. 81, pp. 630–640.

    Article  Google Scholar 

  25. Dai, G.M. and Mishnaevsky, L., Jr., Graphene Monolayer Nanocomposites: 3D Simulation of Damage and Fracture, Computat. Mater. Sci., 2014, vol. 95, pp. 684–692.

    Article  Google Scholar 

  26. Mishnaevsky, L., Jr., Nanostructured Interfaces for Enhancing Mechanical Properties of Materials: Computational Micromechanical Studies, Composites. B, 2015, vol. 68, pp. 75–84.

    Article  Google Scholar 

  27. Qi, H.J., Bruet, B.J.F., Palmer, J.S., Ortiz, C., and Boyce, M.C., Micromechanics and Macromechanics of the Tensile Deformation of Nacre, in Mechanics of Biological Tissues, Holzapfel, G.A. and Ogden, R.W., Eds., Graz: Springer-Verlag, 2005, pp. 175–189.

    Google Scholar 

  28. Marshall, S., Balooch, M., Habelitz, S., Balooch, G., Gallagher, R., and Marshall, G.W., The Dentin-Enamel Junction—A Natural, Multilevel Interface, J. Eur. Ceram. Soc., 2003, vol. 23, no. 15, pp. 2897–2904.

    Article  Google Scholar 

  29. Smith, B., Schaffer, T., Viani, M., Thompson, J., Frederick, N., Kindt, J., Belcher, A., Stucky, G., Morse, D., and Hansma, P., Molecular Mechanistic Origin of the Toughness of Natural Adhesives, Fibres and Composites, Nature, 1999, vol. 399, pp. 761–763.

    Google Scholar 

  30. Katti, D.R., Pradhan, S.M., and Katti, K.S., Modeling the Organic-Inorganic Interfacial Nanoasperities in a Model Bio-Nanocomposite, Nacre, Rev. Adv. Mater. Sci., 2004, vol. 6, pp. 162–168.

    Google Scholar 

  31. Dai, G.M. and Mishnaevsky, L., Jr., Carbone Nanotube Reinforced Hybrid Composites: Computational Modelling of Environmental Fatigue and Their Usability for Wind Blades, Composites. B, 2015, 10.1016/j.compositesb. 2015.03.073.

    Google Scholar 

  32. Mishnaevsky, L., Jr., Lavashov, E., Valiev, R.Z., Segurado, H., Sabirov, I., Enkeev, N., Prokoshkin, S., and Solov’yov, A.V., Nanostructured Titanium Based Materials for Medical Implants: Modeling and Development, Mater. Sci. Eng. R, 2014, vol. 81, pp. 1–19.

    Article  Google Scholar 

  33. Liu, H.S. and Mishnaevsky, L., Jr., Gradient Ultrafine-Grained Titanium: Computational Study of Mechanical and Damage Behavior, Acta Mater., 2014, vol. 71, pp. 220–233.

    Article  Google Scholar 

  34. Liu, H.S., Pantleon, W., and Mishnaevsky, L., Jr., Non-Equilibrium Grain Boundaries in UFG Titanium: Computational Study of Sources of the Material Strengthening, Computat. Mater. Sci., 2014, vol. 83, pp. 318–330.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Mishnaevsky Jr..

Additional information

Original Text © L. Mishnaevsky, Jr., 2015, published in Fizicheskaya Mezomekhanika, 2015, Vol. 18, No. 5, pp. 137-143.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishnaevsky, L. Damage Mechanisms of Hierarchical Composites: Computational Modelling. Phys Mesomech 18, 416–423 (2015). https://doi.org/10.1134/S102995991504013X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102995991504013X

Keywords

Navigation