Skip to main content
Log in

Fractal description of significant nano-effects in polymer composites with nanosized fillers. Aggregation, phase interaction, and reinforcement

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The paper analyzes experimental data obtained on physical and mechanical properties of nanostructured particle-reinforced composites with elastomer matrices and nano- and microsized carbon-containing particles by scanning probe microscopy and nanoindentation with specialized 3D computer processing. The nano-effects observed in the elastomer matrices are described using the fractal approach. A fractal model of nanoparticle aggregation in a polymer matrix is proposed. Phase interactions in the nanostructured polymer materials are described and fractal relations that predict the reinforcing effect of this type of media are presented. It is shown that interphase regions in the nanostructured composites are the same reinforcing elements as a nanofiller for the medium. It is found that reinforcement of elastomer composites by nanosized particles is a true nano-effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yanovsky, Yu.G., Kozlov, G.V., and Karnet, Yu.N., Fractal Description of the Reinforcing Mechanism in Particle-Reinforced Composites, Mekh. Kompozit. Mat. Konstr., 2011, vol. 7, no. 2, pp. 203–208.

    Google Scholar 

  2. Malamatov, A.Kh., Kozlov, G.V., and Mikitaev, A.K., Reinforcing Mechanisms in Polymer Composites, Moscow: Izd. Ros. Khim.-Tekhnol. Univer., 2006.

    Google Scholar 

  3. Mikitaev, A.K., Kozlov, G.V., and Zaikov, G.E., Polymer Composites: Variety of Structure Forms and Applications, Moscow: Nauka, 2009.

    Google Scholar 

  4. Kozlov, G.V., Yanovsky, Yu.G., and Karnet, Yu.N., Structure and Properties of Particle-Reinforced Polymer Composites. Fractal Analysis, Moscow: Al’yanstransatom, 2008.

    Google Scholar 

  5. Buchachenko, A.L., Nanochemistry as a Direct Way to HighTec of XXI Century, Uspekhi Khimii, 2003, vol. 72, no. 5, pp. 419–437.

    Google Scholar 

  6. Edwards, D.C., Polymer-Filler Interactions in Rubber Reinforcement, J. Mater. Sci., 1990, vol. 25, no. 12, pp. 4175–4185.

    Article  ADS  Google Scholar 

  7. Kozlov, G.V., Yanovsky, Yu.G., Burya, A.I., and Afashagova, Z.Kh., Structure and Properties of Particle-reinforced Phenylon-Aerosyl Nanocomposites, Mekh. Kompozit. Mat. Konstr, 2007, vol. 13, no. 4, pp. 479–492.

    Google Scholar 

  8. Lipatov, Yu.S., Physical Chemistry of Filled Polymers, Moscow: Khimiya, 1977.

    Google Scholar 

  9. Bartenev, G.M. and Zelenev, Yu.V., Physics and Mechanics of Polymers, Moscow: Vysshay Shkola, 1983.

    Google Scholar 

  10. Kozlov, G.V., Yanovsky, Yu.G., and Zaikov, G.E., Structure and Properties of Particulate-Filled Polymer Composites: the Fractal Analysis, New York: Nova Science Publishers, Inc., 2010.

    Google Scholar 

  11. Mikitaev, A.K., Kozlov, G.V., and Zaikov, G.E., Polymer Nanocomposites: Variety of Structure Forms and Applications, New York: Nova Science Publishers, Inc., 2008.

    Google Scholar 

  12. McClintock, F.A. and Argon, A.S., Mechanical Behavior of Materials, Massachusetts, USA: Addison-Wesley Publishing Company, 1966.

    Google Scholar 

  13. Kozlov, G.V. and Mikitaev, A.K., Plasticity of Polymethylmetacrylate under Shock Loading, Dokl. AN SSSR, 1987, vol. 294, no. 5, pp. 1129–1131.

    Google Scholar 

  14. Honeycombe, R.W.K., The Plastic Deformation of Metals, London: E. Arnold, 1984.

    Google Scholar 

  15. Dickie, R., Polymer Blends, Paul, D. and Newman, S., Eds., New York: Academic Press, 1979.

    Google Scholar 

  16. Yanovsky, Yu.G., Valiev, Kh.Kh., Kornev, Yu.V., Karnet, Yu.N., Boiko, O.V., Kosichkina, K.P., and Yumashev, O.B., The Role of Scale Factor in Estimation of the Mechanical Properties of Composite Materials with Nanofillers, Nanomech. Sci. Technol, 2010, vol. 1, no. 3, pp. 187–211.

    Google Scholar 

  17. Oliver, W.C. and Pharr, G.M., An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, vol. 7, no. 6, pp. 1564–1583.

    Article  ADS  Google Scholar 

  18. Kozlov, G.V., Yanovsky, Yu.G., and Lipatov, Yu.S., Fractal Analysis of Interphase Structure and Properties in Particle Reinforced Polymer Composites, Mekh. Kompozit. Mat. Konstr, 2002, vol. 8, no. 1, pp. 111–149.

    Google Scholar 

  19. Kozlov, G.V., Burya, A.I., and Lipatov, Yu.S., A Fractal Model of Strengthening of Elastomer Nanocomposites, Mekh. Kompozitnykh Mat, 2006, vol. 42, no. 6, pp. 797–802.

    Google Scholar 

  20. Hentschel, H.G.E. and Deutch, J.M., Flory-Type Approximation for the Fractal Dimension of Cluster-Cluster Aggregates, Phys. Rev. A, 1984, vol. 29, no. 3, pp. 1609–1611.

    Article  ADS  Google Scholar 

  21. Kozlov, G.V., Ovcharenko, E.N., and Mikitaev, A.K., Structure of Amorphous State in Polymers, Moscow: Izd. Ros. Khim.-Tekhnol. Univer., 2009.

    Google Scholar 

  22. Yanovsky, Yu.G. and Kozlov, G.V., Interphase Structure and Properties of Particle-Reinforced Nanocomposites with Elastomer Matrices, Mater. VII Mezhd. Nauchn.-Prakt. Konf. “Novye Polimernye Kompozitsionnye Materially”, Nal’chik: Kabardin.-Balkar. Gos. Univer., 2011, pp. 189–194.

    Google Scholar 

  23. Wu, S., Chain Structure and Entanglement, J. Polymer Sci. Part B: Polymer Phys., 1989, vol. 27, no. 4, pp. 723–741.

    Article  ADS  Google Scholar 

  24. Aharoni, S.M., On Entanglements of Flexible and Rodlike Polymers, Macromolecules, 1983, vol. 16, no. 9, pp. 1722–1728.

    Article  ADS  Google Scholar 

  25. Budtov, V.P., Physical Chemistry of Polymer Solutions, SPb.: Khimiya, 1992.

    Google Scholar 

  26. Aharoni, S.M., Correlations between Chain Parameters and Failure Characteristics of Polymers Below Their Glass Transition Temperature, Macromolecules, 1985, vol. 18, no. 12, pp. 2624–2630.

    Article  ADS  Google Scholar 

  27. Bobryshev, A.N., Kozomazov, V.N., Babin, L.O., and Solomatov, V.I., Synergetics of Composites, Lipetsk: NPO ORIUS, 1994.

    Google Scholar 

  28. Kozlov, G.V., Yanovsky, Yu.G., and Karnet, Yu.N., A Fractal Model of Strengthening of Elastomers by Particle Fillers, Mekh. Kompozit. Mat. Konstr, 2005, vol. 11, no. 3, pp. 446–450.

    Google Scholar 

  29. Sheng, N., Boyce, M.C., Parks, D.M., Rutledge, G.C., Abes, J.I., and Cohen, R.E., Multiscale Micromechanical Modeling of Polymer/Clay Nanocomposites and the Effective Clay Particle, Polymer, 2004, vol. 45, no. 2, p. 487–506.

    Article  Google Scholar 

  30. Witten, T.A. and Meakin, P., Diffusion-Limited Aggregation at Multiple Growth Sites, Phys. Rev. B, 1983, vol. 28, no. 10, pp. 5632–5642.

    Article  ADS  Google Scholar 

  31. Witten, T.A. and Sander, L.M., Diffusion-Limited Aggregation, Phys. Rev. B, 1983, vol. 27, no. 9, pp. 5686–5697.

    Article  MathSciNet  ADS  Google Scholar 

  32. Happel, G. and Brenner, G., Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media, Moscow: Mir, 1976.

    Google Scholar 

  33. Mills, N J., The Rheology of Filled Polymers, J. Appl. Polymer Sci., 1971, vol. 15, no. 11, pp. 2791–2805.

    Article  Google Scholar 

  34. Kozlov, G.V. and Mikitaev, A.K., New Approach to Fractal Dimension of Structure of Particle-Reinforced Composites, Mekh. Kompozit. Mat. Konstr, 1996, vol. 2, no. 3–4, pp. 144–157.

    Google Scholar 

  35. Kozlov, G.V., Yanovsky, Yu.G., and Mikitaev, A.K., Self-Similarity and Scaling Range of Filler Frame in Polymer Composites, Mekh. Kompozitnykh Mat, 1998, vol. 34, no. 4, pp. 539–544.

    Google Scholar 

  36. Balankin, A.S., Synergetic of Deformed Solids, Moscow: Izd. Ministerstva Oborony SSSR, 1991.

    Google Scholar 

  37. Hornbogen, E., Fractals in Microstructure of Metals, Int. Mater. Rev., 1989, vol. 34, no. 6, pp. 277–296.

    Google Scholar 

  38. Pfeifer, P., Fractal Dimension as Working Tool for Surface-Roughness Problems, Appl. Surf. Sci., 1984, vol. 18, no. 1, pp. 146–164.

    Article  ADS  Google Scholar 

  39. Avnir, D., Farin, D., and Pfeifer, P., Surface Geometric Irregularity of Particulate Materials: the Fractal Approach, J. Colloid Interface Sci., 1985, vol. 103, no. 1, pp. 112–123.

    Article  Google Scholar 

  40. Ishikawa, K., Fractals in Dimple Patterns of Ductile Fracture, J. Mater. Sci. Lett., 1990, vol. 9, no. 4, pp. 400–402.

    Article  MathSciNet  Google Scholar 

  41. Ivanova, VS., Balankin, A.S., Bunin, I.Zh., and Oksogoev, A.A., Synergetics and Fractals in Materials Science, Moscow: Nauka, 1994.

    MATH  Google Scholar 

  42. Vstovsky, G.V., Kolmakov, L.G., and Terentiev, V.F., Multifractal Analysis of Fracture Features in Subsurface Molybdenum Layers, Metally, 1993, vol. 4, pp. 164–178.

    Google Scholar 

  43. Hansen, J.P. and Skjeitorp, A.T., Fractal Pore Space and Rock Permeability Implications, Phys. Rev. B, 1988, vol. 38, no. 4, pp. 2635–2638.

    Article  ADS  Google Scholar 

  44. Pfeifer, P., Avnir, D., and Farin, D., Scaling Behavior of Surface Irregularity in the Molecular Domain: from Adsorption Studies to Fractal Catalysts, J. Stat. Phys., 1984, vol. 36, no. 5/6, pp. 699–716.

    Article  ADS  Google Scholar 

  45. Farin, D., Peleg, S., Yavin, D., and Avnir, D., Applications and Limitations of Boundary Line Fractal Analysis of Irregular Surfaces: Proteins, Aggregates and Porous Materials, Langmuir, 1985, vol. 1, no. 4, pp. 399–407.

    Article  Google Scholar 

  46. Yanovsky, Yu.G., Kozlov, G.V., Kornev, Yu.V., Boiko, O.V., and Karnet, Yu.N., A Physical Behavioral Model of Polymer Nanostructured Composites at Nanoindentation, Mekh. Kompozit. Mat. Konstr, 2010, vol. 16, no. 3, pp. 445–453.

    Google Scholar 

  47. Kozlov, G.V. and Sanditov, D.S., Anharmonic Effects and Physical and Mechanical Properties of Polymers, Novosibirsk: Nauka, 1994.

    Google Scholar 

  48. Bessonov, M.I. and Rudakov, A.P, Nonlinear Elasticity and Force Interactions in Isotropic Polymers, Vysokomolek. Soed. B, 1971, vol. 13, no. 7, pp. 509–514.

    Google Scholar 

  49. Kubat, J., Rigdahl, M., and Welander, M., Characterization of Interfacial Interactions in High Density Polyethylene Filled with Glass Spheres Using Dynamic-Mechanical Analysis, J. Appl. Polymer Sci., 1990, vol. 39, no. 5, pp. 1527–1539.

    Article  Google Scholar 

  50. Yanovsky, Yu.G., Kozlov, G.V., and Aloev, V.Z., Experimental and Theoretical Estimations of Filler Fractal Dimension of Polymer Composites, Mater. Mezhd. Nauchn.-Prakt. Konf. “Sovremennye Problemy Teorii i Praktiki Innovatsionnogo Razvitiya APK”, Nal’chik: Kabardin.-Balkar. Gos. Sel’sko-Khoz. Akad., 2011, pp. 434–437.

    Google Scholar 

  51. Chow, T.S., Prediction of Stress-Strain Relationships in Polymer Composites, Polymer, 1991, vol. 32, no. 1, pp. 29–33.

    Article  Google Scholar 

  52. Ahmed, S. and Jones, F.R., A Review of Particulate Reinforcement Theories for Polymer Composites, J. Mater. Sci., 1990, vol. 25, no. 12, pp. 4933–4942.

    Article  ADS  Google Scholar 

  53. Kozlov, G.V., Yanovsky, Yu.G., and Aloev, V.Z., Strengthening of Particle-Reinforced Elastomer Nanocomposites as a True Nano-effect, Mater. Mezhd. nauchn.-prakt. konf, posvyashchennoi 50-letiyuFMEP, Nal’chik: Kabardin.-Balkar. Gos. Sel’sko-Khoz. Akad., 2011, pp. 83–89.

    Google Scholar 

  54. Andrievskii, R.A., Nanomaterials: Concepts and Modern Problems, Ross. Khim. Zhurn., 2002, vol. 46, no. 5, pp. 50–56.

    Google Scholar 

  55. Kozlov, G.V., Sultonov, N.Zh., Shoranova, L.O., and Mikitaev, A.K., Nanofiller Particle Aggregation in Low-Density Polyethylene-Calcium Carbonate Nanocomposites, Naukoemk. Tekhnol, 2011, vol. 12, no. 3, pp. 17–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Yanovsky.

Additional information

Original Russian Text © Yu.G. Yanovsky, G.V. Kozlov, Yu.N Karnet, 2012, published in Fizicheskaya Mezomekhanika, 2012, Vol. 15, No. 6, pp. 21–34.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yanovsky, Y.G., Kozlov, G.V. & Karnet, Y.N. Fractal description of significant nano-effects in polymer composites with nanosized fillers. Aggregation, phase interaction, and reinforcement. Phys Mesomech 16, 9–22 (2013). https://doi.org/10.1134/S1029959913010025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959913010025

Keywords

Navigation