Skip to main content
Log in

Studying the coordination geometry of 3d transition-metal ions in complexes of crown-substituted porphyrins by EXAFS spectroscopy with allowance for multiple scattering

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The structure of a series of complexes of 3d metals (Co, Ni, and Cu) with substituted porphyrins is studied by X-ray EXAFS spectroscopy. Together with complexes based on tetraphenylporphyrin and octaethylporphyrin with known crystalline structures, new complexes of asymmetrically substituted tetraphenylporphyrin, 5-(4-(((4′-hydroxy-benzo-15-crown-5)-5′-yl)diazo)phenyl)-10,15,20-triphenylporphyrin, are studied. Based on an analysis of experimental spectra with allowance for the contributions of multiple scattering, the coordination parameters of metal atoms at the center of the porphyrin ring are determined: the bond distances and valence angles between them for the first four coordination spheres around metal atoms. The EXAFS spectra are shown to be sensitive to the angular parameters. Differences in the geometric parameters in the series of studied metal-porphyrin complexes are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. M. Kadish, K. M. Smith, and R. Guilard, The Porphyrin Handbook (Academic, San Diego, 2000), Vol. 1, pp. 43–131.

    Google Scholar 

  2. N. Cheng, C. Kemna, S. Goubert-Renaudin, and A. Wieckowski, Electrocatalysis 3, 238 (2012).

    Article  Google Scholar 

  3. H. Tributsch, U. I. Koslowski, and I. Dorbant, Electochim. Acta 53, 21989 (2008).

    Article  Google Scholar 

  4. D. C. Koningsberger and R. Prins, X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES, Vol. 92 (Eindhoven, Univ. of Technol., Netherlands, Wiley, New York, 1988), p. 673.

    Google Scholar 

  5. A. Filliponi, J. Phys.: Condens. Matter 13(7), R23 (2001).

    Google Scholar 

  6. P. D’Angelo, V. Barone, G. Chillemi, N. Sanna, et al., J. Am. Chem. Soc. 124, 1958 (2002).

    Article  Google Scholar 

  7. L. S. Ivashkevich, A. Yu. Kuzmin, D. M. Kochubei, V. V. Kriventsov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2, 641 (2008).

    Article  Google Scholar 

  8. V. G. Vlasenko, A. I. Uraev, A. S. Burlov, and A. D. Garnovskii, Poverkhnost’, No. 10, 14 (2004).

    Google Scholar 

  9. L. A. Avakyan, A. S. Manukyan, A. A. Mizarkhanyan, and E. G. Sharoyan, Opt. Spectrosc. 114, 347 (2013).

    Article  Google Scholar 

  10. B. Ravel and M. Newville, J. Synchrotr. Rad. 12, 537 (2005).

    Article  Google Scholar 

  11. J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, et al., Phys. Chem. Chem. Phys. 12, 5503 (2010).

    Article  Google Scholar 

  12. N. Binsted, EXCURV98, Computer Program (CCLRC Daresbury Laboratory, 1998).

    Google Scholar 

  13. A. Filipponi, A. Di Cicco, and C. R. Natoli, Phys. Rev. B 52, 15122 (1995).

    Article  Google Scholar 

  14. A. Filipponi and A. Di Cicco, Phys. Rev. B 52, 15135 (1995).

    Article  Google Scholar 

  15. T. N. Lomova and B. D. Berezin, Koord. Khim. 19, 171 (1993).

    Google Scholar 

  16. A. Yu. Tsivadze, Ya. F. Al’ Ansari, V. E. Baulin, and E. V. Savinkina, Russ. J. Coord. Chem. 34, 911 (2008).

    Article  Google Scholar 

  17. A. L. Trigub, Ya. F. Al’ Ansari, A. A. Veligzhanin, Ya. V. Zubavichus, et al., Izv. Vyssh. Uchebn. Zaved., Fiz. 3(2), 187 (2010).

    Google Scholar 

  18. A. A. Chernyshov, A. A. Veligzhanin, and Y. V. Zubavichus, Nucl. Instrum. Methods Phys. Res. A 603, 95 (2009).

    Article  Google Scholar 

  19. P. D’Angelo, A. Lapi, V. Magliorati, and A. Arcovito, Inorg. Chem. 47, 9905 (2008).

    Article  Google Scholar 

  20. A. Filipponi, A. Di Cicco, T. A. Tyson, and C. R. Natoli, Solid State Commun. 78, 265 (1991).

    Article  Google Scholar 

  21. W. R. Sheidt and I. Turowska-Tyrk, Inorg. Chem. 33, 1314 (1994).

    Article  Google Scholar 

  22. W. R. Sheidt and J. L. Hoard, J. Am. Chem. Soc. 95, 8281 (1973).

    Article  Google Scholar 

  23. E. F. Meyer, Jr., Acta Crystallogr. B 28, 2162 (1972).

    Article  Google Scholar 

  24. E. B. Fleisher, C. K. Miller, and L. E. Webb, J. Am. Chem. Soc. 86, 2342 (1964).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Trigub.

Additional information

Original Russian Text © A.L. Trigub, Ya.F. Al’Ansari, A.A. Veligzhanin, Ya.V. Zubavichus, A.A. Chernyshov, V.E. Baulin, A.Yu. Tsivadze, 2014, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2014, No. 1, pp. 24–31.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trigub, A.L., Al’Ansari, Y.F., Veligzhanin, A.A. et al. Studying the coordination geometry of 3d transition-metal ions in complexes of crown-substituted porphyrins by EXAFS spectroscopy with allowance for multiple scattering. J. Surf. Investig. 8, 20–27 (2014). https://doi.org/10.1134/S1027451014010170

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451014010170

Keywords

Navigation