Skip to main content
Log in

Role of the perovskite-like lattice in the high-temperature superconductor mechanism: EXAFS data analysis

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The temperature-dependent extended X-ray absorption fine structure (EXAFS) spectra of hole- and electron-doped high-temperature superconductors (La2 − x Sr x CuO4 and Nd2 − x Ce x CuO4 − δ, respectively) are investigated above the CuK absorption edge. It is demonstrated that, for superconducting compounds (x = 0.15), the part of the oxygen ions in the CuO2 plane oscillates in the double-well potential, and their oscillations are correlated with the charge-carrier transport. The presented data indicate the direct relation between the experimentally observed local dynamic structural inhomogeneity and the local dynamic charge ordering. A phenomenological description of the correlation between the local electronic and local crystalline structures, which enables us to reveal the role of collective oxygen-ion oscillations inherent to the perovskite-like lattice in the establishment of the superconducting state in doped La2CuO4 and Nd2CuO4, is proposed to explain the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Johnston, F. Vernay, B. Moritz, et al., Phys. Rev. B 82, 064513 (2010).

    Article  Google Scholar 

  2. D. Reznik, G. Sangiovanni, O. Gunnarsson, and T. P. Devereaux, Nature 455, E6 (2008).

    Article  CAS  Google Scholar 

  3. F. Giustino, M. L. Cohen, and S. G. Louie, Nature 452, 975 (2008).

    Article  CAS  Google Scholar 

  4. D. Reznik, L. Pintschovius, M. Ito, et al., Nature 440, 1170 (2006).

    Article  CAS  Google Scholar 

  5. M. Chiao, Nature Phys. 3, 148 (2007).

    Article  CAS  Google Scholar 

  6. D. M. Newns and C. C. Tsuei, Nature Phys. 3, 184 (2007).

    Article  CAS  Google Scholar 

  7. T. Fukuda, J. Mizuk, K. Ikeuchi, et al., Phys. Rev. B 71, 060501 (2005).

    Article  Google Scholar 

  8. L. Pintschovius, D. Reznik, and K. Yamada, Phys. Rev. B 74, 174514 (2006).

    Article  Google Scholar 

  9. M. d’Astuto, P. K. Mang, P. Giura, et al., Phys. Rev. Lett. 88, 167002 (2002).

    Article  Google Scholar 

  10. E. S. Božin, G. H. Kwei, H. Takagi, and S. J. L. Billinge, Phys. Rev. Lett. 84, 5856 (2000).

    Article  Google Scholar 

  11. G. Zhao, Phys. Rev. Lett. 103, 236403 (2009).

    Article  Google Scholar 

  12. J. Lee, K. Fujita, K. McElroy, et al., Nature 442, 546 (2006).

    Article  CAS  Google Scholar 

  13. G. Zhao, Phys. Rev. B 75, 214507 (2007).

    Article  Google Scholar 

  14. H. Iwasawa, J. F. Douglas, K. Sato, et al., Phys. Rev. Lett. 101, 157005 (2008).

    Article  CAS  Google Scholar 

  15. M. Tsunekawa, A. Sekiyama, S. Kasai, et al., New J. Phys. 10, 073005 (2008).

    Article  Google Scholar 

  16. G. H. Gweon, T. Sasagawa, S. Y. Zhou, et al., Nature 430, 187 (2004).

    Article  CAS  Google Scholar 

  17. A. Bianconi, N. L. Saini, A. Lanzara, et al., Phys. Rev. Lett. 76, 3412 (1996).

    Article  CAS  Google Scholar 

  18. N. L. Saini, A. Bianconi, and H. Oyanagi, J. Phys. Soc. Jpn. 70, 2092 (2001).

    Article  CAS  Google Scholar 

  19. A. R. Bishop, D. Mihailovic, J. Mustre De Leon, J. Phys.: Cond. Mater 15, L169 (2003).

    Article  CAS  Google Scholar 

  20. N. L. Saini, H. Oyanagi, V. Scagnoli, et al., Europhys. Lett. 63, 125 (2003).

    Article  CAS  Google Scholar 

  21. J. de Leon, M. Acosta-Alejandro, S. D. Conradson, and A. R. Bishop, J. Synchrotron Rad. 12, 193 (2005).

    Article  Google Scholar 

  22. H. Oyanagi, C. Zhang, A. Tsukada, and M. Naito, J. Phys.: Conf. Ser. 108, 012038 (2008).

    Article  Google Scholar 

  23. M. Braden, M. Meven, W. Reichardt, et al., Phys. Rev. B 63, 140510 (2001).

    Article  Google Scholar 

  24. S. A. Kivelson, I. P. Bindloss, E. Fradkin, et al., Rev. Mod. Phys. 75, 1201 (2003).

    Article  CAS  Google Scholar 

  25. C. J. Zhang and H. Oyanagi, Phys. Rev. B 79, 064521 (2009).

    Article  Google Scholar 

  26. V. H. Crespi, M. L. Cohen, and D. R. Penn, Phys. Rev. B 43, 12921 (1991).

    Article  Google Scholar 

  27. N. M. Plakida, V. L. Aksenov, and S. L. Drechsler, Europhys. Lett. 4, 1309 (1987).

    Article  CAS  Google Scholar 

  28. J. M. Hurdy and J. W. Flocken, Phys. Rev. B 60, 2191 (1988).

    Google Scholar 

  29. L. Hozoi, S. Nishimoto, and A. Yamasaki, Phys. Rev. B 72, 144510 (2005).

    Article  Google Scholar 

  30. T. Egami, Y. Petrov, and D. Louca, J. Supercond.: Incorp. Novel Magnetism 13, 709 (2000).

    Article  CAS  Google Scholar 

  31. J. B. Goodenough, Europhys. Lett. 57, 550 (2002).

    Article  CAS  Google Scholar 

  32. J. Orenstein and A. J. Millis, Science 288, 468 (2000).

    Article  CAS  Google Scholar 

  33. A. P. Menushenkov, K. V. Klement’ev, P. V. Konarev, and A. A. Meshkov, JETP Lett. 67, 1034 (1998).

    Article  Google Scholar 

  34. A. P. Menushenkov, K. V. Klement’ev, S. I. Benazet, et al., J. of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, No. 2, 73 (1999).

    Google Scholar 

  35. A. P. Menushenkov, J. of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, No. 12, 58 (1999).

    Google Scholar 

  36. A. P. Menushenkov and K. V. Klementev, J. Phys.: Cond. Mater 12, 3767 (2000).

    Article  CAS  Google Scholar 

  37. A. P. Menushenkov, K. V. Klementev, A. V. Kuznetsov, and M. Yu. Kagan, J. Exp. Theor. Phys. 93, 615 (2001).

    Article  CAS  Google Scholar 

  38. A. P. Menushenkov, K. V. Klementev, A. V. Kuznetsov, and M. Yu. Kagan, Physica B 312313, 31 (2002).

    Article  Google Scholar 

  39. A. P. Menushenkov, J. Synchrotr. Rad. 10, 369 (2003).

    Article  CAS  Google Scholar 

  40. A. P. Menushenkov, R. V. Chernikov, V. V. Sidorov, et al., Bull. Russ. Acad. Sci.: Phys. 72, 1062 (2008).

    Article  Google Scholar 

  41. A. P. Menushenkov, A. V. Kuznetsov, R. V. Chernikov, et al., J. Phys.: Conf. Ser. 190, 012093 (2009).

    Article  Google Scholar 

  42. A. P. Menushenkov, A. V. Kuznetsov, R. V. Chernikov, et al., Zeitschr. Kristallogr. 225, 487 (2010).

    Article  CAS  Google Scholar 

  43. T. C. Huang, E. Moran, and A. I. Nazza, and J. B. Torrance, Physica B 158, 148 (1989).

    Article  CAS  Google Scholar 

  44. H. Takagi, S. Uchida, and Y. Tokura, Phys. Rev. Lett. 62, 1197 (1989).

    Article  CAS  Google Scholar 

  45. M. N. Khlopkin, G. Kh. Panova, A. A. Shikov, D. A. Shulyatev, H. A. Chernoplekov, Physica C 334, 25 (2000).

    Article  Google Scholar 

  46. A. M. Balbashev, D. A. Shulyatev, M. N. Khlopkin, et al., Physica C 256, 371 (1996).

    Article  CAS  Google Scholar 

  47. E. A. Stern, Phys. Rev. B 48, 9825 (1993).

    Article  CAS  Google Scholar 

  48. C. H. Booth and F. Bridges, Physica Scr. 115, 202 (2005).

    Article  Google Scholar 

  49. I. B. Borovskii, R. V. Vedrinskii, V. L. Kraizman, and V. P. Sachenko, Sov. Phys. Usp. 29, 539 (1986).

    Article  Google Scholar 

  50. J. J. Rehr, J. Mustre de Leon, and S. I. Zabinsky, J. Am. Chem. Soc. 113, 5135 (1991).

    Article  CAS  Google Scholar 

  51. K. V. Klementiev, J. Phys. D: Appl. Phys. 34, 209 (2001).

    Article  Google Scholar 

  52. G. Dalba and P. Fornasini, J. Synchrotr. Rad. 4, 243 (1997).

    Article  CAS  Google Scholar 

  53. N. L. Saini and H. Oyanagi, Physica C 412414, 152 (2004).

    Article  Google Scholar 

  54. A. P. Menushenkov, S. Benazeth, J. Purans, et al., Physica C 277, 257 (1997).

    Article  CAS  Google Scholar 

  55. A. P. Menushenkov, S. Benazeth, J. Purans, et al., J. Phys IV (France) 7, 1073 (1997).

    Article  CAS  Google Scholar 

  56. C. Almasan and M. B. Maple, Chemistry of High-Temperature Superconductors, Ed. by C. N. R. Rao (World Scientific, Singapore, 1991).

  57. S. Uji and H. Aoki, Physica C 199, 231 (1992).

    Article  CAS  Google Scholar 

  58. J. B. Goodenough, J. Phys.: Condens. Matter 15, R257 (2003).

    Article  CAS  Google Scholar 

  59. J. Fink, N. Nucker, H. A. Romberg, and J. C. Fuggle, IBM J. Res. Dev. 33, 372 (1989).

    Article  CAS  Google Scholar 

  60. P. W. Anderson, The Theory of Superconductivity in the High-Tc Cuprates, Princeton Ser. in Physics (Princenton Univ. Press, Princeton, New Jersey, 1997).

    Google Scholar 

  61. S. G. Ovchinnikov, Phys. Usp. 40, 993 (1997).

    Article  Google Scholar 

  62. A. C. Walters, T. G. Perring, J.-S. Caux, et al., New J.Phys. 5, 867 (2009).

    CAS  Google Scholar 

  63. M. S. Hybertsen, E. B. Stechel, W. M. C. Foulkes, and M. Schlüter, Phys. Rev. B 45, 10032 (1992).

    Article  CAS  Google Scholar 

  64. E. Pellegrin, N. Nücker, J. Fink, et al., Phys. Rev. B 47, 3354 (1993).

    Article  CAS  Google Scholar 

  65. F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1993).

    Article  Google Scholar 

  66. N. Nücker, J. Fink, J. C. Fuggle, et al., Phys. Rev. B 37, 5158 (1988).

    Article  Google Scholar 

  67. A. Yu. Ignatov, A. A. Ivanov, A. P. Menushenkov, et al., Phys. Rev. B 57, 8671 (1998).

    Article  CAS  Google Scholar 

  68. C. H. Wang, G. Y. Wang, T. Wu, et al., Phys. Rev. B 72, 132506 (2005).

    Article  Google Scholar 

  69. V. F. Gantmakher and V. T. Dolgopolov, Phys. Usp. 53, 1 (2010).

    Article  CAS  Google Scholar 

  70. L. Pintschovius and M. Braden, Phys. Rev. B 60, R15039 (1999).

    Article  CAS  Google Scholar 

  71. L. Pintschovius, Phys. Status Solidi B 242, 30 (2005).

    Article  CAS  Google Scholar 

  72. M. Braden, L. Pintschovius, T. Uefuji, and K. Yamada, Phys. Rev. B 72, 184517 (2005).

    Article  Google Scholar 

  73. J. T. Markert, Y. Dalichaouch, and M. B. Maple, Physical Properties of Htgh Temperature Superconductors in the High-Tc Cuprates, Ed. by D. M. Ginsberg (World Scientific, New York, 1989).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.P. Menushenkov, A.V. Kuznetsov, R.V. Chernikov, A.A. Ivanov, V.V. Sidorov, K.V. Klementiev, 2013, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2013, No. 5, pp. 10–25.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menushenkov, A.P., Kuznetsov, A.V., Chernikov, R.V. et al. Role of the perovskite-like lattice in the high-temperature superconductor mechanism: EXAFS data analysis. J. Surf. Investig. 7, 407–421 (2013). https://doi.org/10.1134/S1027451013030099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451013030099

Keywords

Navigation