Skip to main content
Log in

Charge distribution of nitrogen ions reflected from copper and graphite surfaces

  • Proceedings of XLII International Conference on Particle Crystal Interaction-2012 (Skobeltsyn Institute for Nuclear Physics MSU, 2012, Moscow)
  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A method for the theoretical estimation of the equilibrium charge distribution of ions passed through a media is proposed. It is based on the correction of charge-exchange cross sections for gases using a factor taking the density effect into account. The calculated charge distribution of N ions in graphite agrees well with the existing experimental data. This method makes it possible to estimate the charge distribution of fast N ions reflected from a Cu surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Eckstein, V. A. Molchanov, and H. Verbeek, Nucl. Instrum. Methods Phys. Res. 149, 599 (1978).

    Article  CAS  Google Scholar 

  2. E. S. Mashkova and V. A. Molchanov, Medium-Energy Ion Reflection from Solid (North-Holland Phys. Publ., Amsterdam, Netherlands, 1985), p. 438.

    Google Scholar 

  3. A. Robin, N. Hatke, A. Narmann, et al., Nucl. Instrum. Methods Phys. Res. B 164–165, 566 (2000).

    Article  Google Scholar 

  4. A. Robin, D. Niemann, N. Stolterfoht, and W. Heiland, Phys. Rev. A 67, 052901 (2003).

    Article  Google Scholar 

  5. Yu. A. Fainberg, Ya. A. Teplova, and N. V. Novikov, J. Surf. Invest. 4, 494 (2010).

    Article  Google Scholar 

  6. Yu. A. Fainberg, Ya. A. Teplova, and N. V. Novikov, J. Surf. Invest. 6, 195 (2012).

    Article  CAS  Google Scholar 

  7. V. P. Shevelko, H. Tawara, O. V. Ivanov, et al., J. Phys. B 38, 2675 (2005).

    Article  CAS  Google Scholar 

  8. T. Miyoshi, K. Noda, H. Sato, et al., Nucl. Instrum. Methods Phys. Res. B 251, 79 (2006).

    Article  CAS  Google Scholar 

  9. V. P. Shevelko, I. L. Beigman, M. S. Litsarev, et al., Nucl. Instrum. Methods Phys. Res. B 269, 1455 (2011).

    Article  CAS  Google Scholar 

  10. J. P. Rozet, C. Stephan, and D. Vernhet, Nucl. Instrum. Methods Phys. Res. B 107, 67 (1996).

    Article  CAS  Google Scholar 

  11. S. K. Allison, Rev. Mod. Phys. 30, 1137 (1958).

    Article  CAS  Google Scholar 

  12. I. C. Dmitriev, N. F. Vorob’ev, Zh. M. Konovalova, et al., Sov. Phys. JETP 57, 1157 (1983).

    Google Scholar 

  13. N. V. Novikov and Ya. A. Teplova, Phys. Lett. A 373, 550 (2009).

    Article  CAS  Google Scholar 

  14. N. V. Novikov, J. Surf. Invest. 6, 203 (2012).

    Article  CAS  Google Scholar 

  15. G. Schiwietz and P. L. Grande, Nucl. Instrum. Methods Phys. Res. B 175–177, 125 (2001).

    Article  Google Scholar 

  16. I. S. Dmitriev, Ya. A. Teplova, Yu. A. Belkova, et al., At. Data Nucl. Data Tables 96, 85 (2010).

    Article  CAS  Google Scholar 

  17. H. H. Lo and W. L. Fite, At. Data 1, 305 (1970).

    Google Scholar 

  18. L. I. Pivovar, M. T. Novikov, and A. S. Dolgov, Sov. Phys. JETP 23, 357 (1966).

    Google Scholar 

  19. T. Tonuma, I. Kohno, Y. Miyazawa, et al., J. Phys. Soc. Jpn. 34, 148 (1973).

    Article  CAS  Google Scholar 

  20. D. H. Crandall, M. L. Mallory, and D. C. Kocher, Phys. Rev. A 15, 61 (1977).

    Article  CAS  Google Scholar 

  21. D. H. Crandall, Phys. Rev. A 16, 958 (1977).

    Article  CAS  Google Scholar 

  22. M. Vujovic, M. Matic, B. Cobic, and P. Hvelplund, J. Phys. B 10, 3699 (1977).

    Article  CAS  Google Scholar 

  23. L. D. Gardner, J. E. Bayfield, P. M. Koch, et al., Phys. Rev. A 20, 766 (1979).

    Article  CAS  Google Scholar 

  24. T. R. Dillingham, J. R. Macdonald, and P. Richard, Phys. Rev. A 24, 1237 (1981).

    Article  CAS  Google Scholar 

  25. T. Iwai, Y. Kaneko, M. Kimura, et al., Phys. Rev. A 26, 105 (1982).

    Article  CAS  Google Scholar 

  26. N. V. Novikov and Ya. A. Teplova, Database on Charge-Changing Cross Sections in Ion-Atom Collision. http://cdfe.sinp.msu.ru/services/cccs/

  27. E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974).

    Article  CAS  Google Scholar 

  28. N. V. Novikov, Wave Function Value Database. http://cdfe.sinp.msu.ru/services/wftables/

  29. P. L. Smith and W. Whaling, Phys. Rev. 188, 36 (1969).

    Article  CAS  Google Scholar 

  30. R. Girardeu, E. J. Knystautas, G. Beauchemin, et al., J. Phys. B 4, 1743 (1971).

    Article  Google Scholar 

  31. H. Winter, Phys. Rep. 367, 387 (2002).

    Article  CAS  Google Scholar 

  32. N. V. Novikov, Ya. A. Teplova, and Yu. A. Fainberg, Poverkhnost’,No. 7, 109 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Novikov.

Additional information

Original Russian Text © N.V. Novikov, Ya.A. Teplova, Yu.A. Fainberg, 2013, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2013, No. 3, pp. 35–39.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novikov, N.V., Teplova, Y.A. & Fainberg, Y.A. Charge distribution of nitrogen ions reflected from copper and graphite surfaces. J. Surf. Investig. 7, 227–230 (2013). https://doi.org/10.1134/S1027451013020171

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451013020171

Keywords

Navigation