Skip to main content
Log in

Variations in gas components and total pressure in stem and root disc wood of conifer species

  • Radiation and Biosphere
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The content of CO2 and H2O in vacuum-extracted tree-ring wood of stem and root discs of certain conifer species was measured. Annual distributions of these gas components were found to exhibit cyclic behavior. Moreover, distinct cyclicity was also revealed in interannual variations of the total pressure of the vacuum-extracted tree-ring gas samples. It may be safely assumed that diffusion of stem CO2 into the atmosphere will show the same periodic variability. Two hypotheses about the origin of the cyclicity in the treering CO2 distributions are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. T. Trotter, N. S. Cobb, and T. G. Whitham, “Herbivory, plant resistance, and climate in the tree ring record: Interactions distort climatic reconstructions,” Proc. Nat. Acad. Sci. U.S.A. 99 (15), 10197–10202 (2002).

    Article  ADS  Google Scholar 

  2. V. V. Zuev, D. A. Savchuk, B. G. Ageev, S. L. Bondarenko, and V. A. Sapozhnikova, “New dendrochronological parameter–the result of optoacoustic measurements of CO2 concentration in the annual rings of trees,” Atmos. Ocean. Opt. 19 (5), 417–420 (2006).

    Google Scholar 

  3. V. A. Sapozhnikova, A. N. Gruzdev, B. G. Ageev, Yu. N. Ponomarev, and D. A. Savchuk, “A correlation between SO2 and N2O content in tree rings of Siberian Stone Pine and variations in meteorological parameters,” Dokl. Akad. Nauk 450 (5), 592–598 (2013).

    Google Scholar 

  4. B. G. Ageev, A. N. Gruzdev, and V. A. Sapozhnikova, “The special features of tree ring gas chronologies,” Proc. SPIE—Int. Soc. Opt. Eng. 9680 (12) (2015).

    Google Scholar 

  5. B. G. Ageev, A. P. Zotikova, N. L. Padalko, Yu. N. Ponomarev, D. A. Savchuk, V. A. Sapozhnikova, and E. V. Chernikov, “Variation of H2O, SO2 and SO2 isotope composition in tree rings of Siberian Stone Pine,” Atmos. Oceanic Opt. 24 (4), 397–402 (2011).

    Article  Google Scholar 

  6. M. L. Pruyn, B. L. Gartner, and M. E. Harmon, “Within-steam variation of respiration Pseudotsuda Menziensii (Doglas Fir) trees,” New Phytol. 154 (2), 359–372 (2002).

    Article  Google Scholar 

  7. R. O. Teskey, A. Saveyn, K. Steppe, and M. A. McGuire, “Origin, fate and significance of CO2 in tree stems,” New Phytol. 177 (1), 17–32 (2008).

    Google Scholar 

  8. S. E. Trumbore, A. Angert, N. Kunert, J. Muhr, J. Q. Chambers, “What’s the flux? Unraveling how CO2 fluxes from trees reflect underlying physiological processes,” New Phytol. 197 (2), 353–355 (2013).

    Article  Google Scholar 

  9. J. Bloemen, M. A. McGuire, D. P. Aubrey, R. O. Teskey, and K. Steppe, “Transport of root-respired CO2 via the transpiration stream affects aboveground carbon assimilation and CO2 efflux in trees,” New Phytol. 197 (2), 555–565 (2013).

    Article  Google Scholar 

  10. D. P. Aubrey and R. O. Teskey, “Root-derived CO2 efflux via xylem stream rivals Soil CO2 efflux,” New Phytol. 184 (1), 35–40 (2009).

    Article  Google Scholar 

  11. E. T. Engelund, L. G. Thygesen, S. Svensson, and C. A. S. Hill, “A critical discussion of the physics of wood-water interactions,” Wood Sci. Technol. 47 (1), 141–161 (2013).

    Article  Google Scholar 

  12. B. Ageev, Yu. Ponomarev, V. Sapozhnikova, and D. Savchuk, “A laser photoacoustic analysis of residual CO2 and H2O in larch stems,” Biosensors 5 (1), 1–12 (2015).

    Article  Google Scholar 

  13. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by R.K. Pachauri and L.A. Meyer (IPCC, Geneva, Switzerland, 2014).

  14. V. Bellassen and S. Luyssaert, “Managing forests in uncertain times,” Nature (Gr. Brit.) 506 (7487), 153–155 (2014).

    Article  Google Scholar 

  15. M. Rubino, D. Etheridge, C. Trudinger, and R. Francey, “A revised 1000 year atmospheric δ13C–CO2 record from law dome and south pole, Antarctica,” J. Geophys. Res. 118 (15), 8482–8499 (2013).

    Google Scholar 

  16. S. Stuchebrov, A. Batranin, S. Bondarenko, and V. Sapozhnikova, “X-ray computed tomography in dendrochronology studies,” in Abstr. of the 9th Int. Topical Meeting on Industrial Radiation and Radioisotope Measurement Applications (IRRMA-9), Valencia (Spain), 6–11 July 2014, P. 256.

    Google Scholar 

  17. O. N. Solomina, E. A. Dolgova, and O. E. Maksimova. http://nestorbook.ru/uCat/item/693.

  18. A. N. Gruzdev, H. Schmidt, and G. P. Brasseur, “The effect of the solar rotational irradiance variation on the middle and upper atmosphere calculated by a threedimensional chemistry-climate model,” Atmos. Chem. Phys. 9 (2), 595–614 (2009).

    Article  ADS  Google Scholar 

  19. A. N. Gruzdev and V. A. Bezverkhny, “Two regimes of the quasi-biennial oscillation in the equatorial stratospheric wind,” J. Geophys. Res., D 105 (24), 29435–29443 (2000).

    Article  ADS  Google Scholar 

  20. B. G. Ageev, A. N. Gruzdev, S. L. Bondarenko, and V. A. Sapozhnikova, “Long-term H2O and CO2 trends in conifer disc tree rings and meteorological parameters,” J. Life Sci. (Valley Cottage, NY, U. S.), No. 9, 1002–1008 (2013).

    Google Scholar 

  21. J.-C. Domec and B. L. Gartner, “How do water transport and water storage differ in coniferous earlywood and latewood?,” J. Exp. Bot. 53 (379), 2369–2379 (2002).

    Article  Google Scholar 

  22. Y. Pan, R. A. Birdsey, J. Fang, R. Houghton, P. E. Kauppi, W. A. Kurz, O. L. Phillips, A. Shvidenko, S. L. Lewis, J. G. Canadell, P. Ciais, R. B. Jackson, S. W. Pacala, A. D. McGuire, S. Piao, A. Rautiainen, S. Sitch, D. Hayes, “A large and persistent carbon sink in the world’s forests,” Science 333 (6045), 988–993 (2011).

    Article  ADS  Google Scholar 

  23. D. Schimel, B. B. Stephens, and J. B. Fisher, “Effect of increasing CO2 on the terrestrial carbon cycle,” Proc. Natl. Acad. Sci. USA 112 (2), 436–441 (2015).

    Article  ADS  Google Scholar 

  24. V. N. Aref’ev, N. E. Kamenogradskii, F. V. Kashin, and A. V. Shilkin, “Background component of carbon dioxide concentration in the near-surface air,” Izv., Atmos. Ocean. Phys. 50 (6), 576–582 (2014).

    Article  Google Scholar 

  25. S. G. Shiyatov and V. S. Mazepa, Dendrochronology of the Tree Line in the Urals (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  26. A. V. Glyzin, T. B. Razmakhnina, and V. M. Korsunov, “Dendrochronological studies in the forest-steppe contact zone as a source of information about its time course,” Sib. Ekol. Zh 12 (1), 79–83 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Ageev.

Additional information

Original Russian Text © B.G. Ageev, A.N. Gruzdev, V.A. Sapozhnikova, 2016, published in Optika Atmosfery i Okeana.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ageev, B.G., Gruzdev, A.N. & Sapozhnikova, V.A. Variations in gas components and total pressure in stem and root disc wood of conifer species. Atmos Ocean Opt 30, 209–215 (2017). https://doi.org/10.1134/S1024856017020026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856017020026

Keywords

Navigation