Skip to main content
Log in

The problem of water vapor absorption in the UV spectral range

  • Atmospheric Radiation, Optical Weather, and Climate
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The review of literature data and results of a series of experiments, made by the authors, shows that the problem of UV absorption by atmospheric water vapor has not yet been solved satisfactorily. The attempts to propose a reliable model of atmospheric H2O contributions to the attenuation of UV radiation propagating through the atmosphere or for analysis of data obtained with instruments for atmospheric composition monitoring have not been successful. Additional measurements of the spectral dependence of the absorption cross-section within the 200–400 nm range are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Krasovskii, A. M. Lyudchik, L. Ch. Neverovich, L. N. Turyshev, V. A. Vartanyan, S. V. Dolgii, and Yu. A. Klimov, “The Pion UV Spectrometric Ozonometer: Measurement Procedure and Results of the Comparative Tests,” Atmos. Ocean. Opt. 5(5), 329–331 (1992).

    Google Scholar 

  2. M. M. Makogon, L. I. Nesmelova, and O. B. Rodimova, “Influence of Light Absorption by Atmospheric Water Vapor in the UV-Range on the Determination of the Total Ozone Content,” Atmos. Ocean. Opt. 16(11), 891–895 (2003).

    Google Scholar 

  3. F. McElroy, D. Mikel, and M. Nees, “Determination of Ozone by Ultraviolet Analysis. A New Method for Volume II, Ambient Air Specific Methods, Quality Assurance Handbook for Air Pollution Measurement Systems (Ventura County APCD, 1997).

  4. K. L. Wilson and J. W. Birks, “Mechanism and Elimination of a Water Vapor Interference in the Measurement of Ozone by UV Absorbance,” Environ. Sci. Technol. 40(20), 6361–6367 (2006).

    Article  Google Scholar 

  5. D. L. Rosen and J. B. Gillespie, “Atmospheric Extinction Effect on Analysis of UV Fluorescence Signatures,” Appl. Opt. 28(19), 4260–4261 (1989).

    Article  ADS  Google Scholar 

  6. E. M. Patterson and J. B. Gillespie, “Simplified Ultraviolet and Visible Wavelength Atmospheric Propagation Model,” Appl. Opt. 28(3), 425–429 (1989).

    Article  ADS  Google Scholar 

  7. V. M. Klimkin and V. N. Fedorishchev, “Continuum Laser-Induced Band of Atmospheric Fluorescence,” Optika Atmos. 1(7), 72–76 (1988).

    Google Scholar 

  8. K. Stamnes, S. C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically Stable Algorithm for Discrete-Ordinate-Method Radiative Transfer in Multiple Scattering and Emitting Layered Media,” Appl. Opt. 27(12), 2502–2509 (1988).

    Article  ADS  Google Scholar 

  9. B. Mayer and A. Kylling, “Technical Note: The libRadtran Software Package for Radiative Transfer Calculations—Description and Examples of Use,” Atmos. Chem. and Phys. 5(2), 1855–1877 (2005).

    Article  ADS  Google Scholar 

  10. A. Berk, L. S. Bernstein, G. P. Anderson, P. K. Acharya, D. C. Robertson, J. H. Chetwynd, and S. M. Adler-Golden, “MODTRAN Cloud and Multiple Scattering Upgrades with Application to AVIRIS,” Remote Sens. of Environ. 65(3), 367–375 (1998).

    Article  Google Scholar 

  11. A. Rozanov, V. Rozanov, M. Buchwitz, A. Kokhanovsky, and J. P. Burrows, “SCIATRAN 2.0—A New Radiative Transfer Model for Geophysical Applications in the 175–2400 nm Spectral Region,” Adv. in Space Res. 36(5), 1015–1019 (2005).

    Article  ADS  Google Scholar 

  12. J. J. Hopfield, “The Absorption Spectrum of the Water Vapor between 900 and 2000 Angstroms,” Phys. Rew. 77(4), 560–572 (1950).

    Article  ADS  Google Scholar 

  13. N. F. Borisova and V. M. Osipov, “Extinction of the UV Radiation along the Atmospheric Path,” Atmos. Ocean. Opt. 11(5), 382–386 (1998).

    Google Scholar 

  14. K. A. Burlakov-Vasil’ev and I. E. Vasil’eva, “Spectral Transparency of the Earth’s Atmosphere in the Near- UV Region,” Izv. RAN, Fiz. Atmos. Okeana 28(12), 1170–1175 (1992).

    ADS  Google Scholar 

  15. L. P. Granath, “The Absorption of Ultra-Violet Light by Oxygen, Water Vapor and Quartz,” Phys. Review 34(7), 1045–1048 (1929).

    Article  ADS  Google Scholar 

  16. K. Watabene and M. Zelikoff, “Absorption Coefficients of Water in the Vacuum Ultraviolet,” Opt. Soc. Amer. 43(9), 753–755 (1953).

    Article  ADS  Google Scholar 

  17. B. A. Thompson, P. Harchek, and R. R. Reeves, Jr., “Ultraviolet Absorption Coefficients of CO2, CO, O2, H2O, N2O, NH3, NO, SO2 and CH4 between 1850 and 4000 Å,” Geophys. Res. 68(24), 6431–6436 (1963).

    Article  ADS  Google Scholar 

  18. A. H. Laufer and J. R. McNesby, “Deuterium Isotope Effect in Vacuum-Ultraviolet Absorption Coefficients of Water and Methane,” Can. J. Chem. 43(12), 3487–3490 (1965).

    Article  Google Scholar 

  19. M. Schurgers and K. H. Welge, “Absorptionskoeffizient von H2O2 und N2H4 Zwischen 1200 und 2000 Å,” Z. Naturforsch. 23A, 1508–1510 (1968).

    Google Scholar 

  20. P. G. Wilkinson and H. L. Johnston, “The Absorption Spectra of Methane, Carbon Dioxide, Water Vapor, and Ethylene in the Vacuum Ultraviolet,” J. Chem. Phys. 18(1), 190–197 (1950).

    Article  ADS  Google Scholar 

  21. R. D. Hudson, “Absorption Cross Sections of Stratospheric Molecules,” Can. J. Chem. 52(8), 1465–1478 (1974).

    Article  Google Scholar 

  22. K. Yoshino, J. R. Esmond, W. H. Parkinson, K. Ito, and T. Matsui, “Absorption Cross Section Measurements of Water Vapor in the Wavelength Region 120 to 188 nm,” Chem. Phys. 211(1–3), 387–391 (1996).

    Article  Google Scholar 

  23. K. Yoshino, J. R. Esmond, W. H. Parkinson, K. Ito, and T. Matsui, “Erratum: Absorption Cross Section Measurements of Water Vapor in the Wavelength Region 120 nm to 188 nm,” Chem. Phys. 215, 429–430 (1997).

    Article  Google Scholar 

  24. C. A. Cantrell, A. Zimmer, and G. S. Tyndall, “Absorption Cross-Sections for Water Vapor from 183 nm to 193 nm,” Geophys. Res. Lett. 24(17), 2195–2198 (1997).

    Article  ADS  Google Scholar 

  25. E. J. Lanzendorff, T. F. Hanisco, N. M. Donahue, and P. O. Wennberg, “Comment on ‘The measurement of tropospheric OH radicals…’ by Hofzumahaus et al. and ‘Intercomparison of tropospheric OH radical measurements…’ by Brauers et al.,” Geophys. Res. Lett. 24(23), 3037–3038 (1997).

    Article  ADS  Google Scholar 

  26. A. Hofzumahaus, T. Brauers, U. Aschmutat, U. Brandenburger, H.-P. Dorn, M. Hausmann, F. Holland, C. Plass-Dulmer, M. Sedlacek, M. Weber, and D. H. Ehhalt, “Reply to Comment by Lanzendorff et al.,” Geophys. Res. Lett. 24(23), 3039–3040 (1997).

    Article  ADS  Google Scholar 

  27. D. J. Creasey, D. E. Heard, and J. D. Lee, “Absorption Cross-Section Measurements of Water Vapour and Oxygen at 185 nm. Implications for the Calibration of Field Instruments to Measure OH, HO2 and RO2 Radicals,” Geophys. Res. Lett. 27(11), 1651–1654 (2000).

    Article  ADS  Google Scholar 

  28. C.-Y. Chung, E. P. Chew, B.-M. Cheng, M. Bahou, and Y.-P. Lee, “Temperature Dependence of Absorption Cross-Section of H2O, HOD, and D2O in the Spectral Region 140–193 nm,” Nuclear Instruments and Methods in Phys. Res., A 467,part 2, 1572–1576. (2001).

    Article  ADS  Google Scholar 

  29. C. Schulz, J. B. Jeffries, D. F. Davidson, J. D. Koch, J. Wolfrum, and R. K. Hanson, “Impact of UV Absorption by CO2 and H2O on NO LIF in High-Pressure Combustion Applications,” Proc. of the Combustion Institute 29(2), 2735–2742 (2002).

    Article  Google Scholar 

  30. R. Mota, R. Parafita, A. Giuliani, M.-J. Hubin-Franskin, J. M. C. Lourenco, G. Garcia, S. V. Hoffmann, N. J. Mason, P. A. Ribeiro, M. Raposo, and P. Limao-Vieira, “Water VUV Electronic State Spectroscopy by Synchrotron Radiation,” Chem. Phys. Lett. 416(1–3), 152–159 (2005).

    Article  ADS  Google Scholar 

  31. W. H. Parkinson and K. Yoshino, “Absorption Cross-Section Measurements of Water Vapor in the Wavelength Region 181–199 nm,” Chem. Phys. 294(1), 31–35 (2003).

    Article  ADS  Google Scholar 

  32. P. F. Bernath, “The Spectroscopy of Water Vapour: Experiment, Theory and Applications,” Phys. Chem. Chem. Phys. 4(4), 1501–1509 (2002).

    Article  Google Scholar 

  33. “Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies,” Evaluation No. 12, JPL Publication 97-4.

  34. “Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies,” Evaluation No. 14, JPL Publication 02-25.

  35. “Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies,” Evaluation No. 15, JPL Publication 06-2.

  36. http://www.iupac-kinetic.ch.cam.ac.uk/

  37. N. P. Romanov and V. S. Shuklin, “Transparency of Water over the Range 186–500 nm,” J. Appl. Spectrosc. 41(4), 1189–1193 (1984).

    Article  ADS  Google Scholar 

  38. T. I. Quickenden and J. A. Irvin, “The Ultraviolet Absorption Spectrum of Liquid Water,” Chem. Phys. 72(8), 4416–4428 (1980).

    ADS  Google Scholar 

  39. R. A. J. Litjens, T. I. Quickenden, and C. G. Freeman, “Visible and Near-Ultraviolet Absorption Spectrum of Liquid Water,” Appl. Opt. 38(7), 1216–1223 (1999).

    Article  ADS  Google Scholar 

  40. L. P. Boivin, W. F. Davidson, R. S. Storey, D. Sinclair, and E. D. Earle, “Determination of the Attenuation Coefficients of Visible and Ultraviolet Radiation in Heavy Water,” Appl. Opt. 25(6), 877–882 (1986).

    Article  ADS  Google Scholar 

  41. N. P. Romanov and V. S. Shuklin, “Liquid Water Absorption Spectrum (λ = 180–500 nm,” in Abstracts of the VIII All-Union Symp. on Laser and Acoustic Sounding of the Atmosphere (IOA SO AN SSSR, Tomsk, 1984), Part 1 [in Russian].

    Google Scholar 

  42. Yu. G. Vainer, L. P. Malyavkin, and P. M. Nazarov, “Raman Remote Control of Gaseous Emissions,” Meteorol. Gidrol, No. 12, 39–47 (1980).

  43. M. A. Buldakov, I. I. Ippolitov, V. M. Klimkin, I. I. Matrosov, and V. M. Mitchenkov, “Scattering of 248.5 nm Radiation by Main Atmospheric Gases in the Region 250–283 nm,” in Abstracts of the VIII All-Union Symp. on Laser and Acoustic Sounding of the Atmosphere (IOA SO AN SSSR, Tomsk, 1984), Part 1 [in Russian].

    Google Scholar 

  44. S. E. Karmazin, V. M. Klimkin, S. F. Luk’yanenko, M. M. Makogon, I. N. Potapkin, V. N. Fedorishchev, and A. L. Tsvetkov, “Study of Fluorescent Properties of Atmospheric Gases,” in Abstracts of the IX All-Russian Symp. on High Resolution Molecular Spectroscopy (IOA SO AN SSSR, Tomsk, 1989) [in Russian].

    Google Scholar 

  45. V. A. Kapitanov, B. A. Tikhomirov, V. O. Troitskii, and I. S. Tyryshkin, “Pulse Photoacoustic Spectroscopy of Water Vapor in UV Spectral Region with Space-Time Resolution of Photoacoustic Signals,” Proc. SPIE 3090, 204–207 (1997).

    Article  ADS  Google Scholar 

  46. B. A. Tikhomirov, V. O. Troitskii, V. A. Kapitanov, G. S. Evtushenko, and Yu. N. Ponomarev, “Photo-Acoustic Measurements of Water Vapor Absorption Coefficient in UV Spectral Region,” Acta Phys. Sinica 7(3), 190–195 (1998).

    ADS  Google Scholar 

  47. V. M. Klimkin and V. N. Fedorishchev, “A New Atmospheric Absorption Band in the Ultraviolet,” Atmos. Ocean. Opt. 2(2), 174 (1989).

    ADS  Google Scholar 

  48. V. M. Klimkin, S. F. Luk’yanenko, I. N. Potapkin, and V. N. Fedorishchev, “Study of the Water Vapor Excitation Function,” Atmos. Ocean. Opt. 2(3), 258–259 (1989).

    Google Scholar 

  49. M. A. Buldakov, I. I. Ippolitov, V. M. Klimkin, I. I. Matrosov, and V. M. Mitchenkov, “Interaction of KrF* Laser Radiation with Fundamental Gas Components of the Atmosphere,” J. Appl. Spectrosc. 46(4), 343–346 (1987).

    Article  ADS  Google Scholar 

  50. V. M. Mitchenkov, I. I. Ippolitov, and V. M. Klimkin, “Scattering and Fluorescence Spectra when Exciting Water Vapors by KrF* Laser Radiation at 248.5 nm,” Khimiya Vysokikh Energii 22(1), 58–61 (1988).

    Google Scholar 

  51. I. I. Ippolitov, V. M. Klimkin, V. M. Mitchenkov, V. G. Sokovikov, and V. D. Shelevoi, Experimental Srudy of a KR lidar with an Excimer Laser. Spectroscopic Methods for Atmospheric Sounding (Nauka, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  52. M. A. Buldakov, I. I. Ippolitov, and V. M. Klimkin, “Atmospheric Fluoresecence Excited by KrF* Laser Radiation,” in Abstracts of the XII All-Russian Conf. on Coherent and Nonlinear Optics (MGU, Moscow, 1985), Part II [in Russian].

    Google Scholar 

  53. V. M. Klimkin and V. N. Fedorishchev, “Laser-Induced Fluorescence of Water Vapors,” Optika Atmos. 1(8), 26–30 (1988).

    Google Scholar 

  54. M. M. Makogon and A. N. Kuryak, “Fluorescence of the Atmosphere under the Exposure to Fifth Harmonic of Nd:YAG laser (212.8 nm),” Atmos. Ocean. Opt. 14(10), 874–876 (2001).

    Google Scholar 

  55. S. E. Karmazin, A. N. Kuryak, M. M. Makogon, and A. L. Tsvetkov, “Automated Fluorescence Laser Spectrometer,” Atmos. Ocean. Opt. 8(11, 937 (1995).

    Google Scholar 

  56. A. D. Bykov, S. S. Voronina, and M. M. Makogon, “Estimation of Absorption of 0.27-μm Wavelength Radiation by Atmospheric Water Vapor,” Atmos. Ocean. Opt. 16(4), 288–291 (2003).

    Google Scholar 

  57. A. D. Bykov, S. S. Voronina, and M. M. Makogon, “Water Vapor Absorption Band Nearby 270 nm: Intensity Borrowing Mechanism,” Atmos. Ocean. Opt. 16(11), 912–915 (2003).

    Google Scholar 

  58. N. A. Zvereva and I. I. Ippolitov, “Theoretical Study of the Redistribution of Elecgronic Density during the S0→S1 Transition for Complexes with Hydrogen Bond (H2O)n, n = 2–6,” Izv. Vuzov, Ser. Fiz. 42(5), 8–12 (1999).

    Google Scholar 

  59. N. A. Zvereva, “Theoretical Description of Photodissociative Spectrum of Monomer and Dimer Forms of Water,” Optika i Spektroskopiya 91(1), 1–5 (2001).

    Google Scholar 

  60. J. N. Harvey, J. O. Jung, and R. B. Gerber, “Ultraviolet Spectroscopy of Water Clusters: Excited Electronic States and Absorption Line Shapes of H2On, n = 2–6,” J. Chem. Phys. 109(20), 8747–8750 (1998).

    Article  ADS  Google Scholar 

  61. M. M. Makogon, “Spectral Characteristics of Water Vapor in UV Spectral Region,” Atmos. Ocean. Opt. 14(9), 696–706 (2001).

    Google Scholar 

  62. A. Susa and S. Koda, “An Integrated System for Surface Science Measurements of Adsorbed Species on Ice Surface under UV Laser Irradiation: Application to Water Vapour Deposition, Reaction and Desorption Processes,” Measur. Sci. Technol. 15(7), 1230–1238 (2004).

    Article  ADS  Google Scholar 

  63. P. Dias-Lalcaca, N. J. C. Packham, and H. A. Gebbie, “The Effect of Ultraviolet Radiation on Water Vapour Absorption between 5 and 50 cm−1,” Infrared Phys. 24(5), 437–441 (1984).

    Article  ADS  Google Scholar 

  64. N. I. Furashov and B. A. Sverdlov, “On the Effect of Ultraviolet Radiation on Water Vapor Absorption of Submillimeter Waves,” Radiophys. Quant. Electr. 41(5), 387–391 (1998).

    Article  ADS  Google Scholar 

  65. P.-F. Coheur, S. Fally, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Merienne, C. Hermans, and A. C. Vandaele, “New Water Vapor Line Parameters in the 26000–13000 cm−1 Region,” Quant. Spectrosc. & Radiat. Transfer. 74(4), 493–510 (2002).

    Article  Google Scholar 

  66. R. N. Tolchenov, O. Naumenko, N. F. Zobov, S. V. Shirin, O. L. Polyansky, J. Tennyson, M. Carleer, P.-F. Coheur, S. Fally, A. Jenouvrier, and A. C. Vandaele, “Water Vapour Line Assignments in the 9250–26000 cm−1 Frequency Range,” Mol. Spectrosc. 233, 68–76 (2005).

    Article  ADS  Google Scholar 

  67. M. Grechko, P. Maksyutenko, T. R. Rizzo, and O. V. Boyarkin, “Communication: Feshbach Resonances in the Water Molecule Revealed by State-Selective Spectroscopy,” J. Chem. Phys. 133(8), 081103 (2010).

    Article  ADS  Google Scholar 

  68. M. Grechko, O. V. Boyarkin, T. R. Rizzo, P. Maksyutenko, N. F. Zobov, S. V. Shirin, L. Lodi, J. Tennyson, A. G. Csaszar, and O. L. Polyansky, “State-Selective Spectroscopy of Water up to Its First Dissociation Limit,” J. Chem. Phys. 131(32), 221105 (2009).

    Article  ADS  Google Scholar 

  69. A. N. Kuryak, M. M. Makogon, Yu. N. Ponomarev, B. A. Tikhomirov, and A. A. Fil’, “Photoacoustic Measurements of Absorption of UV (266 nm) Laser Pulses by Atmospheric Air and Its Main Components (N2, O2, and H2O),” in Abstracts of the XVII International Symposium ‘Atmospheric and Ocean Optics. Atmospheric Physics’ (Publishing House of Institute of Atmospheric Optics, Tomsk, 2011) [in Russian].

    Google Scholar 

  70. A. B. Tikhomirov, K. M. Firsov, V. S. Kozlov, M. V. Panchenko, Yu. N. Ponomarev, and B. A. Tikhomirov, “Investigation of Spectral Dependence of Shortwave Radiation Absorption by Ambient Aerosol Using Time-Resolved Photoacoustic Technique,” Opt. Eng. 44(7), 071203 (2005).

    Article  ADS  Google Scholar 

  71. A. M. Kiselev, Yu. N. Ponomarev, A. N. Stepanov, A. B. Tikhomirov, and B. A. Tikhomirov, “Nonlinear Absorption of Femtosecond Laser Pulses (800 nm) by Atmospheric Air and Water Vapour,” Quant. Electron. 41(11), 976–979 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.M. Makogon, Yu.N. Ponomarev, B.A. Tikhomirov, 2013, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makogon, M.M., Ponomarev, Y.N. & Tikhomirov, B.A. The problem of water vapor absorption in the UV spectral range. Atmos Ocean Opt 26, 45–49 (2013). https://doi.org/10.1134/S1024856013010119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856013010119

Keywords

Navigation