Skip to main content
Log in

Degradation mechanisms of MEA characteristics during water electrolysis in solid polymer electrolyte cells

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The processes contributing to degradation of characteristics of membrane-electrode assemblies (MEA) of water electrolyzers with solid polymer electrolyte (SPE) are considered. Particularly, the life tests of an electrolysis cell with SPE reveal the migration of platinum from the cathodic active layer and its deposition in membrane’s near-cathode region. In addition to platinum, several other elements (Ti, Ir, Fe, Ni, Si) are detected in the membrane, carried there with the water-reagent from the structural elements of MEA, electrolysis cell, and its outer framing (anodic electrocatalytic layer, half-cells, tubes, water tank-separator, etc.). The observed considerable loss of platinum in the cathodic catalytic layer leads to a decrease in its activity (due to the decrease in concentration of platinum nanoparticles and the loss of their cohesion), while the appearance in the membrane of platinum and other ions that have the lower mobility as compared with hydrogen ions gives rise to modifications in the membrane structure thus increasing the electrolysis potential in the course of life tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Millet, P., Ranjbari, A., de Guglielmo, F., Grigoriev, S.A., and Aupretre, F., Int. J. Hydrogen Energy, 2012, vol. 37, p. 17478.

    Article  CAS  Google Scholar 

  2. Chandesris, M., Medeau, V., Guillet, N., Chelghoum, S., Thoby, D., and Fouda-Onana, F., Int. J. Hydrogen Energy, 2015, vol. 40, p. 1353.

    Article  CAS  Google Scholar 

  3. Mamat, M.S., Grigoriev, S.A., Dzhus, K.A., Walker, G.S., and Grant, D.M., Int. J. Hydrogen Energy, 2010, vol. 35, p. 7580.

    Article  CAS  Google Scholar 

  4. Grigoriev, S.A., Dzhus’, K.A., Bessarabov, D.G., Markelov, V.V., and Fateev, V.N., Elektrokhim. Energetika, 2014, vol. 14, p. 187.

    Google Scholar 

  5. Grigoriev, S.A., Dzhus, K.A., Bessarabov, D.G., and Millet, P., Int. J. Hydrogen Energy, 2014, vol. 39, p. 20440.

    Article  CAS  Google Scholar 

  6. Zavodzinski, T.A., Davey, J., Jestel, R., Lopez, C., Valerio, J., and Gottesfeld, S., J. Electrochem. Soc., 1993, vol. 140, p. 1981.

    Article  Google Scholar 

  7. Nguyen, T.V. and White, R.E., J. Electrochem. Soc., 1993, vol. 140, p. 2178.

    Article  CAS  Google Scholar 

  8. Yeager, H.L. and Steck, A., J. Electrochem. Soc., 1981, vol. 123, p. 1880.

    Article  Google Scholar 

  9. Xie, G. and Okada, T., J. Electrochem. Soc., 1995, vol. 142, p. 3057.

    Article  CAS  Google Scholar 

  10. Morozov, A.V., Porembskii, V.I., Rozenkevich, M.B., and Fateev, V.N., Zh. Fiz. Khim., 1990, vol. 64, p. 3075.

    CAS  Google Scholar 

  11. Haijiang, Wang., Hui, Li, and Xiao-Zi, Yuan, PEM Fuel Cell Failure Mode Analysis, CRC Press, 2012.

    Google Scholar 

  12. Andersen, S., Grahl-Madsen, L., and Skou, E.M., Solid State Ionics, 2011, vol. 192, p. 602.

    Article  CAS  Google Scholar 

  13. Grigoriev, S.A., Kuleshov, N.V., Grigoriev, A.S., and Millet, P., J. Fuel Cell Sci. Technol., 2015, vol. 12, p. 031004-1.

    Article  Google Scholar 

  14. Su, H., Bladergroen, B.J., Linkov, V., Pasupathi, S., and Ji, S., Int. J. Hydrogen Energy, 2011, vol. 36, p. 15081.

    Article  CAS  Google Scholar 

  15. Mayousse, E., Maillard, F., Fouda-Onana, F., Sicardy, O., and Guillet, N., Int. J. Hydrogen Energy, 2011, vol. 36, p. 10474.

    Article  CAS  Google Scholar 

  16. Sun, S., Shao, Z., Yu, H., Li, G., and Yi, B., J. Power Sources, 2014, vol. 267, p. 515.

    Article  CAS  Google Scholar 

  17. Su, K., Linkov, V., and Bladergroen, B.J., Int. J. Hydrogen Energy, 2013, vol. 38, p. 9601.

    Article  CAS  Google Scholar 

  18. Mauritz, K.A. and Moore, R.B., Chem. Rev., 2004, vol. 104, p. 4535.

    Article  CAS  Google Scholar 

  19. Berejnov, V., Martin, Z., West, M., Kundu, S., Bessarabov, D., Stumper, J., Susac, D., and Hitchcock, A.P., Phys. Chem. Chem. Phys., 2012, vol. 14, p. 4835.

    Article  CAS  Google Scholar 

  20. Millet, P., Pineri, M., and Durand, R., J. Appl. Electrochem., 1989, vol. 19, p. 162.

    Article  CAS  Google Scholar 

  21. Kotz, E.R. and Stucki, S., J. Appl. Electrochem., 1987, vol. 17, p. 1190.

    Article  Google Scholar 

  22. Abdel-Aal, H.K. and Husseina, I.A., Int. J. Hydrogen Energy, 1993, vol. 18, p. 553.

    Article  CAS  Google Scholar 

  23. Gorynin, K.V. and Chechulin, B.B., Titan v mashinostroenii (Titanium in Machine Building), Moscow: Mashinostroenie, 1990.

    Google Scholar 

  24. Alberola, N.D. and Flandin, L., J. Membr. Sci., 2010, vol. 363, p. 67.

    Article  Google Scholar 

  25. Safronova, E.Yu. and Yaroslavtsev, A.B., Solid State Ionics, 2013, vol. 251, p. 23.

    Article  CAS  Google Scholar 

  26. Novikova, S.A. and Yaroslavtsev, A.B., Sorbtsion. Khromatogr. Protsessy, 2008, vol. 8, p. 887.

    Google Scholar 

  27. Novikova, S.A., Yurkov, G.Yu., and Yaroslavtsev, A.B., Mendeleev Commun., 2010, vol. 20, p. 89.

    Article  CAS  Google Scholar 

  28. Novikova, S.A., Safronova, E.Yu., Lysova, A.A., and Yaroslavtsev, A.B., Mendeleev Commun., 2010, vol. 20, p. 156.

    Article  CAS  Google Scholar 

  29. Novikova, S.A., Yurkov, G.Yu., and Yaroslavtsev, A.B., Inorg. Mater., 2010, vol. 46, p. 793.

    Article  CAS  Google Scholar 

  30. Collier, A., Wang, H., Yuan, X.Z., Zhang, J., and Wilkinson, D.P., Int. J. Hydrogen Energy, 2006, vol. 31, p. 1838.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Grigoriev.

Additional information

Original Russian Text © S.A. Grigoriev, D.G. Bessarabov, V.N. Fateev, 2017, published in Elektrokhimiya, 2017, Vol. 53, No. 3, pp. 359–365.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoriev, S.A., Bessarabov, D.G. & Fateev, V.N. Degradation mechanisms of MEA characteristics during water electrolysis in solid polymer electrolyte cells. Russ J Electrochem 53, 318–323 (2017). https://doi.org/10.1134/S1023193517030065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517030065

Keywords

Navigation