Skip to main content
Log in

Aluminum foil as anode material of lithium-ion batteries: Effect of electrolyte compositions on cycling parameters

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Aluminum is used as an example to demonstrate the possibility of spatial stabilization of alloy-forming electrodes of lithium-ion batteries using target formation on their surface of a thin compact inorganic layer and elastic organopolymer coating of products of electroreduction of electrolyte components for improvement of capacity retention and suppression of processes corresponding to irreversible capacity. It is suggested to use aluminum foil as a convenient material and the general approach can be employed as a methodological technique for accelerated composition of an acceptable electrolyte formula for electrodes containing other elements forming alloys with lithium (in particular, silicon and tin).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, W.-J., J. Power Sources, 2011, vol. 196, p. 13.

    Article  CAS  Google Scholar 

  2. Park, C.-M., Kim, J.-H., Kim, H., and Sohn, H.-J., Chem. Soc. Rev., 2010, vol. 39, p. 3115.

    Article  CAS  Google Scholar 

  3. Tirado, J.L., Mater. Sci. Eng. R, 2003, vol. 40, p. 103.

    Article  Google Scholar 

  4. Inoue, H., Proceedings IMLB, Biarritz, France, June 18–23, 2006, Abstract no. 228.

  5. Kuksenko, S.P., Tarasenko, Yu.A., Kovalenko, I.O., and Kartel’, N.T., in Khimiya, fizika i tekhnologiya poverkhnosti (Chemistry, Physics, and Technology of Surface), Kiev: Nauk. dumka, 2009, issue 15, p. 144.

    Google Scholar 

  6. Kuksenko, S.P., Kovalenko, I.O., Tarasenko, Yu.A., and Kartel’, N.T., Khim., Fiz. Tekhnol. Poverkhn., 2010, vol. 1, p. 57.

    CAS  Google Scholar 

  7. Hamon, Y., Brousse, T., Jousse, F., Topart, P., Buvat, P., and Schleich, D.M., J. Power Sources, 2001, vol. 97–98, p. 185.

    Article  Google Scholar 

  8. Wang, C.Y., Meng, Y.S., Ceder, G., and Li, Y., J. Electrochem. Soc., 2008, vol. 155, p. A615.

    Article  CAS  Google Scholar 

  9. Ui, K., Minami, T., Ishikawa, K., Idemoto, Y., and Koura, N., Electrochem., 2005, vol. 73, p. 279.

    Google Scholar 

  10. Chen, Zh., Qian, J., Ai, X., Cao, Y., and Yang, H., Electrochim. Acta, 2009, vol. 54, p. 4118.

    Article  CAS  Google Scholar 

  11. Lei, X., Xiang, J., Ma, X., Wang, Ch., Yi, Z., and Sun, J., J. Power Sources, 2007, vol. 166, p. 509.

    Article  CAS  Google Scholar 

  12. Lei, X., Wang, Ch., Yi, Z., Liang, Y., and Sun, J., J. Alloy Compd., 2007, vol. 429, p. 311.

    Article  CAS  Google Scholar 

  13. Lindsay, M.J., Wang, G.X., and Liu, H.X., J. Power Sources, 2003, vol. 119–121, p. 84.

    Article  Google Scholar 

  14. Fleischauer, M.D., Obrovac, M.N., and Dahn, J.R., J. Electrochem. Soc., 2008, vol. 155, p. A851.

    Article  CAS  Google Scholar 

  15. Fleischauer, M.D., Obrovac, M.N., and Dahn, J.R., J. Electrochem. Soc., 2006, vol. 153, p. A1201.

    Article  CAS  Google Scholar 

  16. Jeong, G.J., Kim, Y.U., Sohn, H.J., and Kang, T., J. Power Sources, 2001, vol. 101, p. 201.

    Article  CAS  Google Scholar 

  17. Trifonona, A.V., Momchilov, A.A., Puresheva, B.L., and Abrahams, I., Solid State Ionics, 2001, vol. 143, p. 319.

    Article  Google Scholar 

  18. Rao, B.M.L., US Patent no. 400492, 1977.

  19. McAlister, A.J., Bull. Alloy Phase Diagrams, 1982, vol. 3, p. 177.

    Article  Google Scholar 

  20. ASM Handbook. Alloy Phase Diagrams, Baker, H., Ed., ASM International, Materials Park, Ohio, 1992, pp. 2–47.

    Google Scholar 

  21. Thackeray, M.M., Vaugheya, J.T., Johnson, C.S., Kropf, A.J., Benedek, R., Fransson, L.M.L., and Edstrom, K., J. Power Sources, 2003, vol. 113, p. 124.

    Article  CAS  Google Scholar 

  22. Kuksenko, S.P., Zh. Prikl. Khim., 2010, vol. 83, p. 589.

    Google Scholar 

  23. Zhang, Sh.Sh., J. Power Sources, 2006, vol. 162, p. 1379.

    Article  CAS  Google Scholar 

  24. Abe, K., Miyoshi, K., Hattori, T., Ushigoe, Y., and Yoshitake, H., J. Power Sources, 2008, vol. 184, p. 449.

    Article  CAS  Google Scholar 

  25. Sazhin, S.V., Gorodyskii, A.V., Khimchenko, M.Y., Kuksenko, S.P., and Danilin, V.V., J. Electroanal. Chem., 1993, vol. 344, p. 61.

    Article  CAS  Google Scholar 

  26. Kedrinskii, I.A., Gerasimova, L.K., Shilkin, V.I., and Shmmyd’ko, I.I., Russ. J. Electrochem., 1995, vol. 31, p. 329.

    CAS  Google Scholar 

  27. Jeong, S.-K., Inaba, M., Mogi, R., Iriyama, Y., Abe, T., and Ogumi, Z., Langmuir, 2001, vol. 17, p. 8281.

    Article  CAS  Google Scholar 

  28. Mogi, R., Inaba, M., Jeong, S.-K., Iriyama, Y., Abe, T., and Ogumi, Z., J. Electrochem. Soc., 2002, vol. 149, p. A1578.

    Article  CAS  Google Scholar 

  29. McMillan, R., Slegr, H., Shu, Z.X., and Wang, W., J. Power Sources, 1999, vol. 81–82, p. 20.

    Article  Google Scholar 

  30. Aurbach, D., Gamolsky, K., Markovsky, B., Gofer, Y., Schmidt, M., and Heider, U., Electrochim. Acta, 2002, vol. 47, p. 1423.

    Article  CAS  Google Scholar 

  31. Ota, H., Sakata, Y., Inoue, A., and Yamaguchib, S., J. Electrochem. Soc., 2004, vol. 151, p. A1659.

    Article  CAS  Google Scholar 

  32. Ota, H., Shima, K., Ue, M., and Yamaki, J., Electrochim. Acta, 2004, vol. 49, p. 565.

    Article  CAS  Google Scholar 

  33. Wrodnigg, G.H., Besenhard, J.O., and Winter, M., J. Electrochem. Soc., 1999, vol. 146, p. 470.

    Article  CAS  Google Scholar 

  34. Ein-Eli, Y., Thomas, S.R., Koch, V., Aurbach, D., Markovsky, B., and Schechter, A., J. Electrochem. Soc., 1996, vol. 143, p. L273.

    Article  CAS  Google Scholar 

  35. Frackowiak, E. and Kuksenko, S., J. Power Sources, 1998, vol. 72, p. 174.

    Article  CAS  Google Scholar 

  36. Kuksenko, S.P., Zh. Prikl. Khim., 1996, vol. 69, p. 1658.

    CAS  Google Scholar 

  37. Gorodyskii, A.V., Sazhin, S.V., Kuksenko, S.P., Khimchenko, M.Yu., Skakal’skii, A.I., and Klimenko, A.N., USSR Inventor’s Certificate No. 1551183, 1989.

  38. Kuksenko, S.P., Sazhin, S.V., and Khimchenko, M.Yu., USSR Inventor’s Certificate No. 1667580, 1991.

  39. Chen, Yufei., Devine, T.M., Evans, J.W., Monteiro, O.R., and Brown, I.G., J. Electrochem. Soc., 1999, vol. 146, p. 1310.

    Article  CAS  Google Scholar 

  40. Bryngelsson, H., Stjerndahl, M., Gustafsson, T., and Edstrom, K., J. Power Sources, 2007, vol. 174, p. 970.

    Article  CAS  Google Scholar 

  41. Matsuaka, O., Hiwara, A., Omi, T., Toriida, M., Hayashi, T., Tanaka, C., Saito, Y., Ishida, T., Tan, H., Ono, S.S., and Yamamoto, S., J. Power Sources, 2002, vol. 108, p. 128.

    Article  Google Scholar 

  42. El Ouatani, L., Dedryvere, R., Siret, C., Biensan, P., Reynaud, S., Iratcabal, P., and Gonbeau, D., J. Electrochem. Soc., 2009, vol. 156, p. A103.

    Article  Google Scholar 

  43. Wang, Y., Nakamura, S., Tasaki, K., and Balbuena, P.B., J. Am. Chem. Soc., 2002, vol. 124, p. 4408.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Kuksenko.

Additional information

Original Russian Text © S.P. Kuksenko, 2013, published in Elektrokhimiya, 2013, Vol. 49, No. 1, pp. 73–82.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuksenko, S.P. Aluminum foil as anode material of lithium-ion batteries: Effect of electrolyte compositions on cycling parameters. Russ J Electrochem 49, 67–75 (2013). https://doi.org/10.1134/S1023193512110080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193512110080

Keywords

Navigation