Skip to main content
Log in

Acid-base properties of Tunisian palygorskite in aqueous medium

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Suspension of a Tunisian palygorskite is studied by acid-base potentiometer and mass titrations in order to determine the point of zero charge (PZC). The Gran plot method, commonly used to determine the equivalence points, is applied for the hydroxide titration with the purpose to calculate the average number of protons reacted per surface site (Z) and then the surface site density of palygorskite suspension at a given ionic strength. The dissociation coefficients of palygorskite surface are calculated and consequently the surface constants acidities are determined by graphical extrapolation method. The studied samples, performed at different ionic strengths, presented Z vs. pH curves with a common crossing point at pH = 9.8 (pHPZC). For the purpose of eliminating the influence of the palygorskite dissolution and the hydrolysis of soluble ions, the net number of surface reacted protons per surface site (Z net) is determined. Z net vs. pH leads to PZC of 8.8 witch is in agreement with the mass titration results. For illustrating the acidic characteristics of palygorskite surface, two surface protonation models are tested: the one site-one pK a, ≡ SOH ⇆ SO + H+, pK a 6.2–6.88; and the two sites-two pK as model, ≡SIOH ⇆ ≡SIO + H+, pK a1 5.26–5.89 and ≡SIIOH ⇆ ≡SIIO + H+, pK a2 9.15–9.71. Both of them give a good description of the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neeman, A. and Singer, A. Appl. Clay Sci., 2004, vol. 25, P. 121.

    Article  CAS  Google Scholar 

  2. Galan, E., Clay Miner., 1996, vol. 31, p. 443.

    Article  CAS  Google Scholar 

  3. Zhuang, J. and Yu, G.R., Chemosphere, 2002, vol. 49, P. 619.

    Article  CAS  Google Scholar 

  4. Minerals in the Soil Environments, Dixon, J. and Weed, S., Eds., Madison (WI): SSSA, 1989, 2nd ed.

    Google Scholar 

  5. Itami, K. and Fujitani, H., Colloids Surf. A, 2005, vol. 265, p. 55.

    Article  CAS  Google Scholar 

  6. Appel, C., Lena, Q., Dean Rhue, M.R., and Kennely, E., Geoderm., 2003, vol. 113, p. 77.

    Article  CAS  Google Scholar 

  7. Hayes, K.F., Redden, G., Ela, W., and Leckie, J.O., J. Colloid Interface Sci., 1991, vol. 142, p. 448.

    Article  CAS  Google Scholar 

  8. Schroth, B.K. and Sposito, G., Clays Clay Minerals, 1997, vol. 45, p. 85.

    Article  CAS  Google Scholar 

  9. Kriaa, A., Hamdi, N., and Srasra, E., Anal. Chem. Ind. J., 2005, vol. 2, p. 10.

    Google Scholar 

  10. Avena, M. and de Pauli, C.P., J. Colloid Interface Sci., 1998, vol. 202, p. 195.

    Article  CAS  Google Scholar 

  11. Noh, S.J. and Schwartz, A.J., J. Colloid Interface Sci., 1989, vol. 130, p. 157.

    Article  CAS  Google Scholar 

  12. Neeman, A. and Singer, A., Soil. Sci. Soc. Am. J., 2000, vol. 64, p. 427.

    Article  Google Scholar 

  13. Alkan, M., Demirbas, O., and Dogan, M., J. Colloid Interface Sci., 2005, vol. 281, p. 240.

    Article  CAS  Google Scholar 

  14. Gran, G., Analyst, 1952, vol. 77, p. 661.

    Article  CAS  Google Scholar 

  15. Solgic, Z. and Marjanovic-Krajovan, Y., Chim. Anal., 1968, vol. 50, p. 122.

    Google Scholar 

  16. Bailey, S.W., in Cristal Structures of Clay Minerals and Their X-Ray Identification, Brindley, G.W. and Brown, G., Eds., London: Mineral Soc., 1980, p. 2.

    Google Scholar 

  17. Du, Q., Sun, Z., Forsling, W., and Tang, H.J., J. Colloid Interface Sci., 1997, vol. 187, p. 221.

    Article  CAS  Google Scholar 

  18. Chorover, J. and Sposito, G., Geochim. Cosmochim. Acta, 1995, vol. 59, p. 875.

    Article  CAS  Google Scholar 

  19. Citeau, L., Thesis, Paris: Inst. Ntl. d’Agronomie, 2004.

  20. Dove, P.M. and Craven, C.M., Geochim. Cosmochim. Acta, 2005, vol. 69, p. 4963.

    Article  CAS  Google Scholar 

  21. Wanner, H., Albinsson, Y., Karnland, O., Wieland, E., Wersin, P., and Charlet, L., Radiochim. Acta, 1994, vol. 66/67, p. 157.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Frini-Srasra.

Additional information

Published in Russian in Elektrokhimiya, 2007, Vol. 43, No. 7, pp. 834–842.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frini-Srasra, N., Kriaa, A. & Srasra, E. Acid-base properties of Tunisian palygorskite in aqueous medium. Russ J Electrochem 43, 795–802 (2007). https://doi.org/10.1134/S1023193507070099

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193507070099

Key words

Navigation