Skip to main content
Log in

Polymorphism of the chloroplast gene rps2 in parasitic plant Monotropa hypopitys L. from the European Russian populations

  • Short Communications
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The complete nucleotide sequence of the chloroplast rps2 gene is determined and the polymorphism of this gene in 26 Monotropa hypopitys accessions from the populations of the European part of Russia is analyzed. The studied accessions can be divided into two groups on the basis of the rps2 gene length. In the first group, the rps2 gene sequence length is 711 bp, and in the second group, it is 753 bp. Also, the groups differ from each other by 42 SNPs, which lead to 11 radical and 15 conservative amino acid substitutions in the amino acid sequence of the protein. They also differ in the position of regulatory elements in the 5'-untranslated region of the gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Clegg, M.T., Gaut, B.S., Learn, G.H., Jr., and Morton, B.R., Rates and patterns of chloroplast DNA evolution, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, no. 15, pp. 6795–6801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McFadden, G., Chloroplast origin and integration, Plant Physiol., 2001, vol. 125, pp. 50–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schluenzen, F., Tocilj, A., Zarivach, R., et al., Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution, Cell, 2000, vol. 102, no. 5, pp. 615–623.

    Article  CAS  PubMed  Google Scholar 

  4. Stahl, D.J., Rodermel, S.R., Bogorad, L., and Subramanian, A.R., Co-transcription pattern of an introgressed operon in the maize chloroplast genome comprising four ATP synthase subunit genes and the ribosomal rps2, Plant Mol. Biol., 1993, vol. 21, no. 6, pp. 1069–1076.

    Article  CAS  PubMed  Google Scholar 

  5. Miyagi, T., Kapoor, S., Sugita, M., and Sugiura, M., Transcript analysis of the tobacco plastid operon rps2/atpI/H/F/A reveals the existence of a non-consensus type II (NCII) promoter upstream of the atpI coding sequence, Mol. Gen. Genet., 1998, vol. 257, no. 3, pp. 299–307.

    Article  CAS  PubMed  Google Scholar 

  6. Wolfe, K.H., Morden, C.W., and Palmer, J.D., Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant, Proc. Natl. Acad. Sci. U.S.A., 1992, vol. 89, pp. 10648–10652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wicke, S., Muller, K.F., de Pamphilis, C.W., et al., Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the Broomrape family, Plant Cell, 2013, vol. 25, pp. 3711–3725. doi 10.1105/tpc.113.113373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bellot, S. and Renner, S.S., The plastomes of two species in the endoparasite genus Pilostyles (Apodanthaceae) each retain just five or six possibly functional genes, Genome Biol. Evol., 2016, vol. 8, no. 1, pp. 189–201. doi 10.1093/gbe/evv251

    Article  CAS  Google Scholar 

  9. Samigullin, T.H., Logacheva, M.D., Penin, A.A., and Vallejo-Roman, C.M., Complete plastid genome of the recent holoparasite Lathraea squamaria reveals earliest stages of plastome reduction in Orobanchaceae, PLoS One, 2016, vol. 11, no. 3. doi 10.1371/journal. pone.0150718

    Google Scholar 

  10. Min, S., Chang-Qin, Z., Yong-Peng, M., et al., Mycorrhizal features and fungal partners of four mycoheterotrophic Monotropoideae (Ericaceae) species from Yunnan, China, Symbiosis, 2012, vol. 57, pp. 1–13. doi 10.1007/s13199-012-0180-4

    Article  CAS  Google Scholar 

  11. Gruzdev, E.V., Mardanov, A.V., Beletsky, A.V., et al., The complete chloroplast genome of parasitic flowering plant Monotropa hypopitys: extensive gene losses and size reduction, Mitochondrial DNA, Part B, 2016, vol. 1, no. 1, pp. 212–213.

    Article  Google Scholar 

  12. Shchennikova, A.V., Beletsky, A.V., Shulga, O.A., et al., Deep-sequence profiling of miRNAs and their target prediction in Monotropa hypopitys, Plant Mol. Biol., 2016, pp. 1–18. doi 10.1007/s11103-016-0478-3

    Google Scholar 

  13. Bidartondo, M.I. and Bruns, T.D., Extreme specificity in epiparasitic Monotropoideae (Ericaceae): widespread phylogenetic and geographical structure, Mol. Ecol., 2001, vol. 10, pp. 2285–2295.

    Article  CAS  PubMed  Google Scholar 

  14. Beatty, G. and Provan, J., High clonal diversity in threatened peripheral populations of the yellow bird’s nest (Hypopitys monotropa; syn. Monotropa hypopitys), Ann. Bot., 2011, vol. 107, pp. 663–670. doi 10.1093/aob/mcr003

    Article  PubMed  PubMed Central  Google Scholar 

  15. Filyushin, M.A., Reshetnikova, N.M., Kochieva, E.Z., and Skryabin, K.G., Intraspecific variability of ITS sequences in the parasitic plant Monotropa hypopitys L. from the European Russian populations, Russ. J. Genet., 2015, vol. 51, no. 11, pp. 1149–1152.

    Article  CAS  Google Scholar 

  16. Filyushin, M.A., Reshetnikova, N.M., Kochieva, E.Z., and Skryabin, K.G., Polymorphism of sequences and the secondary structure of b/c intron of mitochondrial gene nad1 in Monotropa hypopitys and related Ericaceae species, Biol. Bull., 2016, no. 3, pp. 271–275.

    Article  Google Scholar 

  17. Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: Molecular Evolutionary Genetics Analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, no. 12, pp. 2725–2729. doi 10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, Z., Li, J., Zhao, X.-Q., et al., KaKs-calculator: calculating Ka and Ks through model selection and model averaging, Genomics Proteomics Bioinf., 2006, vol. 4, no. 4, pp. 259–263.

    Article  CAS  Google Scholar 

  19. Hirose, T. and Sugiura, M., Functional Shine–Dalgarno-like sequences for translational initiation of chloroplast mRNAs, Plant Cell Physiol., 2004, vol. 45, no. 1, pp. 114–117.

    Article  CAS  PubMed  Google Scholar 

  20. Bidartondo, M.I. and Bruns, T.D., Fine-level mycorrhizal specificity in the Monotropoideae (Ericaceae): specificity for fungal species groups, Mol. Ecol., 2002, vol. 11, pp. 557–569.

    Article  CAS  PubMed  Google Scholar 

  21. Beatty, G. and Provan, J., Comparative phylogeography of two related plant species with overlapping ranges in Europe, and the potential effects of climate change on their intraspecific genetic diversity, BMC Evol. Biol., 2011, vol. 11, pp. 29–40. doi 10.1186/1471-2148-11-29

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Filyushin.

Additional information

Original Russian Text © M.A. Filyushin, E.Z. Kochieva, K.G. Skryabin, 2017, published in Genetika, 2017, Vol. 53, No. 3, pp. 390–396.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filyushin, M.A., Kochieva, E.Z. & Skryabin, K.G. Polymorphism of the chloroplast gene rps2 in parasitic plant Monotropa hypopitys L. from the European Russian populations. Russ J Genet 53, 400–405 (2017). https://doi.org/10.1134/S1022795417030061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417030061

Keywords

Navigation