Skip to main content
Log in

Occurrence of islands in genomes of Sinorhizobium meliloti native isolates

  • Genetics of Microorganisms
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Genomes of 184 Sinorhizobium meliloti native isolates were studied to test the occurence of islands Sme21T, Sme19T, and Sme80S previously described in the model strain Rm1021. This analysis was conducted using PCR methodology involving specific primers. It was demonstrated that, in the examined geographically distinct populations of S. meliloti from the Northern Caucasus (NCG) and the Aral Sea region (PAG), the strains containing genomic islands were observed with similar frequency (0.55 and 0.57, respectively). Island Sme80S, denoted as an island of “environmental adaptivity,” was identified predominantly (frequency of 0.38) in genomes of strains which exhibited a lower level of salt tolerance and was isolated in PAG, a modern center of introgressive hybridization of alfalfa subjected to salinity. Island Sme21T designated as “ancestral” was observed in genomes of strains isolated in NCG, the primary center of host-plant biodiversity, 10-fold more often than in strains from PAG. An island Sme19T, which predominantly carries genes encoding transposases, was observed in genomes of strains in both populations with average frequency of 0.10. The analysis of linkage disequilibrium (LD) based on the assessment of probability for detection of different islands combinations in genomes revealed an independent inheritance of islands in salt-sensitive strains of various geographic origin. In contrast, the absence of this trend was noted in the majority of the examined combinations of salt-tolerant strains. It was concluded that the structure of chromosome in PAG strains which predominantly possessed a salt-sensitive phenotype was subjected to active recombinant processes, which could predetermine the intensity of microevolutionary processes in bacterial populations and facilitate an adaptation of bacteria in adverse environmental effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hacker, J. and Kaper, J.B., Pathogenicity islands and the evolution of microbes, Annu. Rev. Microbiol., 2000, vol. 54, pp. 641–679. doi 10.1146/annurev.micro.54.1.641

    Article  CAS  PubMed  Google Scholar 

  2. Dobrindt, U., Hochhut, B., Hentschel, U., and Hacker, J., Genomic islands in pathogenic and environmental microorganisms, Nat. Rev. Microbiol., 2004, vol. 2, no. 5, pp. 414–424. doi 10.1038/nrmicro884

    Article  CAS  PubMed  Google Scholar 

  3. Kaneko, T., Nakmura, Y., Sato, S., et al., Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti, DNA Res., 2000, vol. 7, no. 6, pp. 331–338. doi 10.1093/dnares/7.6.331

    Article  CAS  PubMed  Google Scholar 

  4. Kaneko, T., Nakamura, Y., Sato, S., et al., Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110, DNA Res., 2002, vol. 9, no. 6, pp. 189–197. doi 10.1093/dnares/9.6.189

    Article  PubMed  Google Scholar 

  5. Langille, M.G.I., Hsiao, W.W.L., and Brinkman, F.S.L., Detection of genomic islands using bioinformatics approaches, Nat. Rev. Microbiol., 2010, vol. 8, no. 5, pp. 373–382. doi 10.1038/nrmicro2350

    Article  CAS  PubMed  Google Scholar 

  6. Hacker, J., Blum-Oehler, G., Muehldorfer, I., and Tschaepe, H., Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution, Mol. Microbiol., 1997, vol. 23, no. 6, pp. 1089–1097. doi 10.1046/j.1365-2958.1997.3101672.x

    CAS  Google Scholar 

  7. Fouts, D.E., Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences, Nucleic Acids Res., 2006, vol. 34, no. 20, pp. 5839–5851. doi 10.1093/nar/gkl732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Middendorf, B., Hochhut, B., Leipold, K., et al., Instability of pathogenicity islands in uropathogenic Escherichia coli 536, J. Bacteriol., 2004, vol. 186, no. 10, pp. 3086–3096. doi 10.1128/JB.186.10.3086-3096.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Juhas, M., van der Meer, J.R., Gaillard, M., et al., Genomic islands: tools of bacterial horizontal gene transfer and evolution, FEMS Microbiol. Rev., 2009, vol. 33, no. 2, pp. 376–393. doi 10.1111/j.1574-6976. 2008.00136.x

    Article  CAS  PubMed  Google Scholar 

  10. Capela, D., Barloy-Hubler, F., Gouzy, J., et al., Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 17, pp. 9877–9882. doi 10.1073/pnas.161294398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mantri, Y. and Williams, K.P., Islander: a database of integrative islands in prokaryotic genomes, the associated integrases and their DNA site specificities, Nucleic Acids Res., 2004, vol. 32, D.55–D.58. doi 10.1093/nar/gkh059

    Google Scholar 

  12. Roumiantseva, M.L., Muntyan, V.S., and Simarov, B.V., Genomic islands of bacteria: structure and the functional analysis, in VIS’ezd VOGiS i assotsiirovannye geneticheskie simpoziumy (6th Congress of the Vavilov Society of Geneticists and Breeders and the Associated Genetic Symposia), Rostov on Don, 2014, p. 188.

    Google Scholar 

  13. Ferrieres, L., Francez-Charlot, A., Gouzy, J., et al., FixJ-regulated genes evolved through promoter duplication in Sinorhizobium meliloti, Microbiology, 2004, vol. 150, no. 7, pp. 2335–2345. doi 10.1099/mic.0.27081-0

    Article  CAS  PubMed  Google Scholar 

  14. Dzyubenko, N.I., Malyshev, L.L., and Rakovskaya, N.V., Mobilization of the genetic diversity of wild relatives of cultivated plants in the North Caucasus, in Geneticheskie resursy kul’turnykh rastenii (Genetic Resources of Cultivated Plants) (Proc. Int. Theor. Pract. Conf.), St. Petersburg, 2001, pp. 29–31.

    Google Scholar 

  15. Dzyubenko, N.I., Dzyubenko, E.A., and Khusainov, S.Kh., Methodical bases of expedition search and collection of salt-tolerant populations of wild species of leguminous plants in the zone of ecological disaster of the North Aral Sea area, in Geneticheskie resursy kul’turnykh rastenii (Genetic Resources of Cultivated Plants) (Proc. Int. Theor. Pract. Conf.), St. Petersburg, 2001, pp. 27–28.

    Google Scholar 

  16. Ibragimova, M.V., Roumiantseva, M.L., Onishchuk, O.P., et. al, Symbiosis between the root-nodule bacterium Sinorhizobium meliloti and alfalfa (Medicago sativa) under salinization conditions, Microbiology (Moscow), 2006, vol. 75, no. 1, pp. 71–81. doi 10.1134/S0026261706010140

    Article  Google Scholar 

  17. Biondi, E.G., Pilli, E., Giuntini, E., et al., Genetic relationship of Sinorhizobium meliloti and Sinorhizobium medicae strains isolated from Caucasian region, FEMS Microbiol. Lett., 2003, vol. 220, no. 2, pp. 207–213. doi 10.1016/s0378-1097(03)00098-3

    Article  CAS  PubMed  Google Scholar 

  18. Roumiantseva, M.L., Genetic resources of nodule bacteria (review), Russ. J. Genet., 2009, vol. 45, no. 9, pp. 1013–1026. doi 10.1134/s2079059711020079

    Article  CAS  Google Scholar 

  19. Ivanov, A.I., Lyutserna (Alfalfa), Moscow: Kolos, 1980.

    Google Scholar 

  20. Kust, G.S., Desertification and the evolution of arid areas (exemplified by the Aral Sea region), Extended Abstract of Doctoral (Biol.) Dissertation, Mosk. Gos. Univ., Moscow, 1993.

    Google Scholar 

  21. Roumiantseva, M.L., Muntyan, V.S., Mengoni, A., and Simarov, B.V., ITS-polymorphism of salt-tolerant and salt-sensitive native isolates of Sinorhizobium meliloti— symbionts of alfalfa, clover and fenugreek plants, Russ. J. Genet., 2014, vol. 50, no. 4, pp. 348–359. doi 10.1134/S1022795414040103

    Article  CAS  Google Scholar 

  22. Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1982.

  23. Roumiantseva, M.L., Simarov, B.V., Onishchuk, O.P., et al., Biologicheskoe raznoobrazie klubenkovykh bakteriy v ekosistemakh i agrotsenozakh: teoreticheskie osnovy i metody (Biological Diversity of Root Nodule Bacteria in Ecosystems and Agrocenoses), Roumiantseva, M.L. and Simarov, B.V., Eds., St. Petersburg: Vserossiyskiy Nauchno-Issledovatel’skiy Institut Selskokhoziaystvennoy Mikrobiologii Rossiyskoy Akademii Selskokhoziaystvennykh Nauk, 2011.

  24. Belova, V.S., Krol, L., Andronov, E.E., et al., Comparative genomics of Sinorhizobium meliloti/S. medicae isolates native to gene centers of alfalfa, in Applied and Fundamental Aspects of Responses, Signaling and Developmental Process in the Root-Microbe Systems (Abstracts of Postgraduate Course and Meeting of the Research Consortium on Evolution of Plant–Microbe Interactions), St.-Petersburg, 2007, p. 39.

    Google Scholar 

  25. Andronov, E.E., Climate change, salinization and soil microbial community adaptive evolution, in Adaptation to Climate Change in the Baltic Sea Region: Contributions from Plant and Microbial Biotechnology, Mikkeli, 2010, O11.

    Google Scholar 

  26. Hammer, O., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological statistics software package for education and data analysis, Palaeontol. Electron., 2001, vol. 4, no. 1. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

  27. Excoffier, L. and Lischer, H.E.L., Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Res., 2010, vol. 10, pp. 564–567. doi 10.1111/j.1755-0998.2010.02847.x

    Article  Google Scholar 

  28. Schwarz, H., Stichprobenverfahren: ein Leitfaden zur Anwendung statistischer Methoden zur Bewertung, München: R. Oldenbourg, 1975.

    Google Scholar 

  29. Roumiantseva, M.L. and Muntyan, V.S., Root nodule bacteria Sinorhizobium meliloti: tolerance to salinity and bacterial genetic determinants, Microbiology (Moscow), 2015, vol. 84, no. 3, pp. 303–318. doi 10.1134/S0026261715030170

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Roumiantseva.

Additional information

Original Russian Text © V.S. Muntyan, M.E. Cherkasova, E.E. Andronov, B.V. Simarov, M.L. Roumiantseva, 2016, published in Genetika, 2016, Vol. 52, No. 10, pp. 1126–1133.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muntyan, V.S., Cherkasova, M.E., Andronov, E.E. et al. Occurrence of islands in genomes of Sinorhizobium meliloti native isolates. Russ J Genet 52, 1015–1022 (2016). https://doi.org/10.1134/S102279541608010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541608010X

Keywords

Navigation