Skip to main content
Log in

Regulatory genomics: Combined experimental and computational approaches

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The review describes combined experimental and computational approaches to the investigation of the mechanisms of transcriptional regulation of eukaryotic genes and organization of transcription regulatory regions. These include (a) an analysis of the factors affecting the affinity of TBP (TATA-binding protein) for the TATA box; (b) research on the patterns of chromatin mark distributions and their role in the regulation of gene expression; (c) a study of 3D chromatin organization; (d) an estimation of the effects of polymorphisms on gene expression via high-resolution ChIP-seq and DNase-seq techniques. It was demonstrated that combined experimental and computational approaches are very important for the current understanding of transcription regulatory mechanisms and the structural and functional organization of the regulatory regions controlling transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pareek, C.S., Smoczynski, R., and Tretyn, A., Sequencing technologies and genome sequencing, J. Appl. Genet., 2011, vol. 52, pp. 413–435.

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Xuan, J., Yu. Y., Qing. T., et al., Next-generation sequencing in the clinic: promises and challenges, Cancer Lett., 2013, vol. 340, pp. 284–295.

    CAS  PubMed  Google Scholar 

  3. 1000 Genomes Project Consortium, Abecasis, G.R., and Auton, A., An integrated map of genetic variation from 1092 human genomes, Nature, 2012, vol. 491, pp. 56–65.

    Google Scholar 

  4. Bernstein, B.E., Stamatoyannopoulos, J.A., Costello, J.F., et al., The NIH Roadmap epigenomics mapping consortium, Nat. Biotechnol., 2010, vol. 28, pp. 1045–1048.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Chen, G.G., Diallo, A.B., Poujol, R., et al., BisQC: an operational pipeline for multiplexed bisulphite sequencing, BMC Genomics, 2014, vol. 16, p. 290.

    Google Scholar 

  6. Rodriguez, J., Frigola, J., Vendrell, E., et al., Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers, Cancer Res., 2006, vol. 66, pp. 8462–8468.

    CAS  PubMed  Google Scholar 

  7. Jacinto, F.V., Ballestar, T., and Esteller, M., Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome, BioTechniques, 2008, vol. 44, pp. 35–43.

    CAS  PubMed  Google Scholar 

  8. Bonder, M.J., Kasela, S., Kals, M., et al., Genetic and epigenetic regulation of gene expression in fetal and adult human livers, BMC Genomics, 2014, vol. 15, p. 860.

    PubMed Central  PubMed  Google Scholar 

  9. Johnson, D.S., Mortazavi, A., Myers, R.M., and Wold, B., Genome-wide mapping of in vivo protein-DNA interactions, Science, 2007, vol. 316, pp. 1497–1502.

    CAS  PubMed  Google Scholar 

  10. Shanker, A., Genome research in the cloud, OMICS, 2012, vol. 16, pp. 422–428.

    CAS  PubMed  Google Scholar 

  11. Liu, L., Li, Y., Li, S., et al., Comparison of next-generation sequencing systems, J. Biomed. Biotechnol., 2012. ID. 251364

    Google Scholar 

  12. Lee, H. and Schatz, M.C., Genomic dark matter: the reliability of short read mapping illustrated by the genome mappability score, Bioinformatics, 2012, vol. 28, pp. 2097–2105.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Bailey, T., Krajewski, P., Ladunga, I., et al., Practical guidelines for the comprehensive analysis of ChIP-seq data, PLoS Comput. Biol., 2013, vol. 9. e1003326

    PubMed Central  PubMed  Google Scholar 

  14. Chung, D., Park, D., Myers, K., et al., dPeak: high resolution identification of transcription factor binding sites from PET and SET ChIP-Seq data, PLoS Comput. Biol., 2013, vol. 9. e1003246

    PubMed Central  PubMed  Google Scholar 

  15. Lesluyes, T., Johnson, J., Machanick, P., and Bailey, T.L., Differential motif enrichment analysis of paired ChIP-seq experiments, BMC Genomics, 2014, vol. 15, p. 752.

    PubMed Central  PubMed  Google Scholar 

  16. Drucker, T.M., Johnson, S.H., Murphy, S.J., et al., BIMA V3: an aligner customized for mate pair library sequencing, Bioinformatics, 2014, vol. 30, pp. 1627–1629.

    CAS  PubMed  Google Scholar 

  17. Zhang, Y., Liu, T., Meyer, C.A., et al., Model-based analysis of ChIP-Seq (MACS), Genome Biol., 2008, vol. 9, p. R137.

    PubMed Central  PubMed  Google Scholar 

  18. Li, R., Li, Y., Kristiansen, K., and Wang, J., SOAP: short oligonucleotide alignment program, Bioinformatics, 2008, vol. 24, pp. 713–714.

    CAS  PubMed  Google Scholar 

  19. Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L., Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol., 2009, vol. 10, p. R25.

    PubMed Central  PubMed  Google Scholar 

  20. Hah, N., Danko, C.G., Core, L., et al., A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells, Cell, 2011, vol. 145, pp. 622–634.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Allen, M.A., Andrysik, Z., Dengler, V.L., et al., Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms, Elife, 2014, vol. 3. e02200

    PubMed Central  PubMed  Google Scholar 

  22. Kulakovskiy, I., Levitsky, V., Oshchepkov. D., et al., From binding motifs in ChIP-Seq data to improved models of transcription factor binding sites, J. Bioinform. Comput. Biol., 2013, vol. 11, p. 1340004.

    PubMed  Google Scholar 

  23. Levitsky, V.G., Kulakovskiy, I.V., Ershov, N.I., et al., Application of experimentally verified transcription factor binding sites models for computational analysis of ChIP-Seq data, BMC Genomics, 2014, vol. 15, no. 80, pp. 1–12.

    Google Scholar 

  24. Thurman, R.E., Rynes, E., Humbert, R., et al., The accessible chromatin landscape of the human genome, Nature, 2012, vol. 489, pp. 75–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Matsumura, H., Ito, A., Saitoh, H., et al., Super-SAGE, Cell Microbiol., 2005, vol. 7, pp. 11–18.

    CAS  PubMed  Google Scholar 

  26. Ferella, M., Davids, B.J., Cipriano, M.J., et al., Gene expression changes during giardia-host cell interactions in serum-free medium, Mol. Biochem. Parasitol., 2014, vol. 197, pp. 21–23.

    CAS  PubMed  Google Scholar 

  27. Karapetyan, A., Buiting, C., Kuiper, R.A., and Coolen, M.W., Regulatory roles for long ncRNA and mRNA, Cancers, 2013, vol. 5, pp. 462–490.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Danan, M., Schwartz, S., Edelheit, S., and Sorek, R., Transcriptome-wide discovery of circular RNAs in Archaea, Nucleic Acids Res., 2012, vol. 40, pp. 3131–3142.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Cho, S., Cho, Y., Lee, S., et al., Current challenges in bacterial transcriptomics, Genomics Inform., 2013, vol. 11, pp. 76–82.

    PubMed Central  PubMed  Google Scholar 

  30. Kawaji, H., Lizio, M., Itoh, M., et al., Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing, Genome Res., 2014, vol. 24, pp. 708–717.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Kanamori-Katayama, M., Itoh, M., Kawaji, H., et al., Unamplified cap analysis of gene expression on a single-molecule sequencer, Genome Res., 2011, vol. 21, pp. 1150–1159.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Murata, M., Nishiyori-Sueki, H., Kojima-Ishiyama, M., et al., Detecting expressed genes using CAGE, Methods Mol. Biol., 2014, vol. 1164, pp. 67–85.

    PubMed  Google Scholar 

  33. Tucker, T., Marra, M., and Friedman, J.M., Massively parallel sequencing: the next big thing in genetic medicine, Am. J. Hum. Genet., 2009, vol. 85, pp. 142–154.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Mangan, M.E., Williams, J.M., Kuhn, R.M., and Lathe, W.C. III, The UCSC genome browser: what every molecular biologist should know, Curr. Protoc. Mol. Biol., 2014, vol. 107, pp. 19.9.1–19.9.36.

    Google Scholar 

  35. ENCODE Project Consortium, Birney, E., Stamatoyannopoulos, J.A., et al., Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project, Nature, 2007, vol. 447, pp. 799–816.

    Google Scholar 

  36. ENCODE Project Consortium, Bernstein, B.E., Birney, E., et al., An integrated encyclopedia of DNA elements in the human genome, Nature, 2012, vol. 489, pp. 57–74.

    Google Scholar 

  37. modENCODE Consortium, Roy, S., Ernst, J., et al., Identification of functional elements and regulatory circuits by Drosophila modENCODE, Science, 2010, vol. 330, pp. 1787–1797.

    Google Scholar 

  38. Slattery, M., Ma, L., Spokony, R.F., et al., Diverse patterns of genomic targeting by transcriptional regulators in Drosophila melanogaster, Genome Res., 2014, vol. 24, pp. 1224–1235.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Li, J.J., Huang, H., Bickel, P.J., and Brenner, S.E., Comparison of D. melanogaster and C. elegans developmental stages, tissues, and cells by modENCODE RNA-seq data, Genome Res., 2014, vol. 24, pp. 1086–1101.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Zhimulev, I.F., Zykova, T.Y., Goncharov, F.P., et al., Genetic organization of interphase chromosome bands and interbands in Drosophila melanogaster, PLoS One, 2014, vol. 9. e101631

    PubMed Central  PubMed  Google Scholar 

  41. Boley, N., Wan, K.H., Bickel, P.J., and Celniker, S.E., Navigating and mining modENCODE data, Methods, 2014, vol. 68, pp. 38–47.

    CAS  PubMed  Google Scholar 

  42. Kawai, J., Shinagawa, A., Shibata, K., et al., Functional annotation of a full-length mouse cDNA collection, Nature, 2001, vol. 409, pp. 685–690.

    PubMed  Google Scholar 

  43. Katayama, S., Tomaru, Y., Kasukawa, T., et al., Antisense transcription in the mammalian transcriptome, Science, 2005, vol. 309, pp. 1564–1566.

    PubMed  Google Scholar 

  44. Carninci, P., Kasukawa, T., Katayama, S., et al., The transcriptional landscape of the mammalian genome, Science, 2005, vol. 309, pp. 1559–1563.

    CAS  PubMed  Google Scholar 

  45. Grinchuk, O.V., Jenjaroenpun, P., Orlov, Y.L., et al., Integrative analysis of the human cis-antisense gene pairs, miRNAs and their transcription regulation patterns, Nucleic Acids Res., 2010, vol. 38, pp. 534–547.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. FANTOM Consortium, and the RIKEN PMI, and CLST (DGT), et al., Promoter-level mammalian expression atlas, Nature, 2014, vol. 507, pp. 462–470.

    Google Scholar 

  47. Andersson, R., Gebhard, C., Miguel-Escalada, I., et al., An atlas of active enhancers across human cell types and tissues, Nature, 2014, vol. 507, pp. 455–461.

    CAS  PubMed  Google Scholar 

  48. Li, G., Ruan, X., Auerbach, R.K., et al., Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation, Cell, 2012, vol. 148, pp. 84–98.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. de Wit, E. and de Laat, W., A decade of 3C technologies: insights into nuclear organization, Genes Dev., 2012, vol. 26, pp. 11–24.

    PubMed Central  PubMed  Google Scholar 

  50. Dekker, J., Marti-Renom, M.A., and Mirny, L.A., Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data, Nat. Rev. Genet., 2013, vol. 14, pp. 390–403.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Niu, L., Li, G., and Lin, S., Statistical models for detecting differential chromatin interactions mediated by a protein, PLoS One, 2014, vol. 9. e97560

    PubMed Central  PubMed  Google Scholar 

  52. Dixon, J.R. and Ren, B., Topological domains in mammalian genomes identified by analysis of chromatin interactions, Nature, 2012, vol. 485, pp. 376–380.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Lieberman-Aiden, E., van Berkum, N.L., Williams, L., et al., Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, 2009, vol. 326, pp. 289–293.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Kalhor, R., Tjong, H., Jayathilaka, N., et al., Genome architectures revealed by tethered chromosome conformation capture and population-based modeling, Nat. Biotechnol., 2011, vol. 30, pp. 90–98.

    PubMed Central  PubMed  Google Scholar 

  55. Battulin, N.R., Fishman, V.S., Orlov, Yu.L., et al., 3C-based methods for 3D genome organization analysis, Inf. Vestn. Vavilovskogo O-va Genet. Sel., 2012, vol. 16, pp. 872–876.

    Google Scholar 

  56. Fullwood, M.J., Liu, M.H., Pan, Y.F., et al., An oestrogen-receptor-alpha-bound human chromatin interactome, Nature, 2009, vol. 462, pp. 58–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Kieffer-Kwon, K.R., Tang, Z., Mathe, E., et al., Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation, Cell, 2013, vol. 155, pp. 1507–1520.

    CAS  PubMed  Google Scholar 

  58. Heintzman, N.D., Hon, G.C., Hawkins, R.D., et al., Histone modifications at human enhancers reflect global cell-type-specific gene expression, Nature, 2009, vol. 459, pp. 108–112.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Gavrilov, A.A., Chetverina, H.V., Chermnykh, E.S., et al., Quantitative analysis of genomic element interactions by molecular colony technique, Nucleic Acids Res., 2014, vol. 42. e36

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Visel, A., Rubin, E.M., and Pennacchio, L.A., Genomic views of distant-acting enhancers, Nature, 2009, vol. 461, pp. 199–205.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Ghosh, D., Object-oriented transcription factors database (ooTFD), Nucleic Acids Res., 2000, vol. 28, pp. 308–310.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Schmid, C.D., Perier, R., Praz, V., and Bucher, P., EPD in its twentieth year: towards complete promoter coverage of selected model organisms, Nucleic Acids Res., 2006, vol. 34, pp. D82–D85.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Heinemeyer, T., Wingender, E., Reuter, I., et al., Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL, Nucleic Acids Res., 1998, vol. 26, pp. 362–367.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Kolchanov, N.A., Ignatieva, E.V., Ananko, E.A., et al., Transcription regulatory regions database (TRRD): its status in 2002, Nucleic Acids Res., 2002, vol. 30, pp. 312–317.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Suzuki, A., Wakaguri, H., Yamashita, R., et al., DBTSS as an integrative platform for transcriptome, epigenome and genome sequence variation data, Nucleic Acid Res., 2014. pii: gku1080

    Google Scholar 

  66. Jiang, C., Xuan, Z., Zhao, F., and Zhang, M.Q., TRED: a transcriptional regulatory element database, new entries and other development, Nucleic Acids Res., 2007, vol. 35, pp. D137–D140.

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Gupta, R., Bhattacharyya, A., Agosto-Perez, F.J., et al., MPromDb update 2010: an integrated resource for annotation and visualization of mammalian gene promoters and ChIP-seq experimental data, Nucleic Acids Res., 2011, vol. 39, pp. D92–D97.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Fernández-Suárez, X.M., Rigden, D.J., and Galperin, M.Y., The 2014 nucleic acids research database issue and an updated NAR online molecular biology database collection, Nucleic Acids Res., 2014, vol. 42, pp. D1–D6.

    PubMed Central  PubMed  Google Scholar 

  69. Zhang, H.M., Chen, H., Liu, W., et al., AnimalTFDB: a comprehensive animal transcription factor database, Nucleic Acids Res., 2012, vol. 40, pp. D144–D149.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Wingender, E., Schoeps, T., and Dönitz, J., TFClass: an expandable hierarchical classification of human transcription factors, Nucleic Acids Res., 2013, vol. 41, pp. D165–D170.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Shipra, A., Chetan, K., and Rao, M.R., CREMOFAC-a database of chromatin remodeling factors, Bioinformatics, 2006, vol. 22, pp. 2940–2944.

    CAS  PubMed  Google Scholar 

  72. Portales-Casamar, E., Thongjuea, S., Kwon, A.T., et al., JASPAR 2010: the greatly expanded openaccess database of transcription factor binding profiles, Nucleic Acids Res., 2010, vol. 38, pp. D105–D110.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Kulakovskiy, I.V., Medvedeva, Y.A., Schaefer, U., et al., HOCOMOCO: a comprehensive collection of human transcription factor binding sites models, Nucleic Acids Res., 2013, vol. 41, pp. D195–D202.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Lenhard, B., Sandelin, A., and Carninci, P., Metazoan promoters: emerging characteristics and insights into transcriptional regulation, Nat. Rev. Genet., 2012, vol. 13, pp. 233–245.

    CAS  PubMed  Google Scholar 

  75. Sandelin, A., Carninci, P., Lenhard, B., et al., Mammalian RNA polymerase II core promoters: insights from genome-wide studies, Nat. Rev. Genet., 2007, vol. 8, pp. 424–436.

    CAS  PubMed  Google Scholar 

  76. Juven-Gershon, T. and Kadonaga, J.T., Regulation of gene expression via the core promoter and the basal transcriptional machinery, Dev. Biol., 2010, vol. 339, pp. 225–229.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Merkulova, T.I., Ananko, E.A., Ignat’eva, E.V., and Kolchanov, N.A., Regulatory transcription codes in eukaryotic genomes, Russ. J. Genet., 2013, vol. 49, no. 1, pp. 29–45.

    CAS  Google Scholar 

  78. Raiber, E.A., Kranaster, R., Lam, E., et al., A noncanonical DNA structure is a binding motif for the transcription factor SP1 in vitro, Nucleic Acids Res., 2012, vol. 40, pp. 1499–1508.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Deaton, A.M. and Bird, A., CpG islands and the regulation of transcription, Genes Dev., 2011, vol. 25, pp. 1010–1022.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Smith, E. and Shilatifard, A., Enhancer biology and enhanceropathies, Nat. Struct. Mol. Biol., 2014, vol. 21, pp. 210–219.

    CAS  PubMed  Google Scholar 

  81. Sakabe, N.J. and Nobrega, M.A., Genome-wide maps of transcription regulatory elements, Wiley Interdiscip. Rev. Syst. Biol. Med., 2010, vol. 2, pp. 422–437.

    CAS  PubMed  Google Scholar 

  82. Frankel, N., Davis, G.K., Vargas, D., et al., Phenotypic robustness conferred by apparently redundant transcriptional enhancers, Nature, 2010, vol. 466, pp. 490–493.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Kim, T.K., Hemberg, M., Gray, J.M., et al., Widespread transcription at neuronal activity-regulated enhancers, Nature, 2010, vol. 465, pp. 182–187.

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Négre, N., Brown, C.D., Shah, P.K., et al., A comprehensive map of insulator elements for the Drosophila genome, PLoS Genet., 2010, vol. 6. e1000814

    PubMed Central  PubMed  Google Scholar 

  85. Ohlsson, R., Lobanenkov, V., and Klenova, E., Does CTCF mediate between nuclear organization and gene expression?, BioEssays, 2010, vol. 32, pp. 37–50.

    CAS  PubMed  Google Scholar 

  86. Van Bortle, K. and Corces, V., tDNA insulators and the emerging role of TFIIIC in genome organization, Transcription, 2012, vol. 3, pp. 277–284.

    PubMed Central  PubMed  Google Scholar 

  87. Ghirlando, R., Giles, K., Gowher, H., et al., Chromatin domains, insulators, and the regulation of gene expression, Biochim. Biophys. Acta, 2012, vol. 1819, pp. 644–651.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Tanimoto, K., Sugiura, A., Omori, A., et al., A human beta-globin locus control region HS5 contains CTCF- and developmental stage-dependent enhancer-blocking activity in erythroid cells, Mol. Cell Biol., 2003, vol. 23, pp. 8946–8952.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Hark, A.T., Schoenherr, C.J., Katz, D.J., et al., CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus, Nature, 2000, vol. 405, pp. 486–489.

    CAS  PubMed  Google Scholar 

  90. Lefevre, P., Witham, J., Lacroix, C.E., et al., The LPSinduced transcriptional upregulation of the chicken lysozyme locus involves CTCF eviction and noncoding RNA transcription, Mol. Cell, 2008, vol. 32, pp. 129–139.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Phillips-Cremins, J.E. and Corces, V.G., Chromatin insulators: linking genome organization to cellular function, Mol. Cell, 2013, vol. 50, pp. 461–474.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Hahn, S., Buratowski, S., Sharp, F., and Guarente, L., Yeast TATA-binding protein TFIID binds to TATA elements with both consensus and nonconsensus DNA sequences, Proc. Natl. Acad. Sci. U.S.A., 1989, vol. 86, pp. 5718–5722.

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Venters, B.J. and Pugh, B.F., Genomic organization of human transcription initiation complexes, Nature, 2013, vol. 502, pp. 53–58.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Coleman, R.A. and Pugh, B.F., Evidence for functional binding and stable sliding of the TATA binding protein on nonspecific DNA, J. Biol. Chem., 1995, vol. 270, pp. 13850–13859.

    CAS  PubMed  Google Scholar 

  95. Hieb, A.R., Gansen, A., Böhm, V., and Langowski, J., The conformational state of the nucleosome entryexit site modulates TATA box-specific TBP binding, Nucleic Acids Res., 2014, vol. 42, pp. 7561–7576.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Ponomarenko, P.M., Savinkova, L.K., Drachkova, I.A., et al., A step-by-step model of TBP/TATA box binding allows predicting human hereditary diseases by single nucleotide polymorphism, Dokl. Biochem. Biophys., 2008, vol. 419, no. 6, pp. 88–92.

    CAS  PubMed  Google Scholar 

  97. Savinkova, L.K., Ponomarenko, M.P., Ponomarenko, P.M., et al., TATA box polymorphisms in human gene promoters and associated hereditary pathologies, Biochemistry (Moscow), 2009, vol. 74, no. 2, pp. 117–129.

    CAS  Google Scholar 

  98. Savinkova, L., Drachkova, I., Arshinova, T., et al., An experimental verification of the predicted effects of promoter TATA-box polymorphisms associated with human diseases on interactions between the TATA boxes and TATA-binding protein, PLoS One, 2013, vol. 8. e54626

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Drachkova, I., Savinkova, L., Arshinova, T., et al., The mechanism by which TATA-box polymorphisms associated with human hereditary diseases influence interactions with the TATA-binding protein, Hum. Mutat., 2014, vol. 35, pp. 601–608.

    CAS  PubMed  Google Scholar 

  100. Bannister, A.J. and Kouzarides, T., Regulation of chromatin by histone modifications, Cell Res., 2011, vol. 21, pp. 381–395.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Teif, V.B., Beshnova, D.A., Vainshtein, Y., et al., Nucleosome repositioning links DNA (de)methylation and differential CTCF binding during stem cell development, Genome Res., 2014, vol. 24, pp. 1285–1295.

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Smolle, M. and Workman, J.L., Transcription-associated histone modifications and cryptic transcription, Biochim. Biophys. Acta, 2013, vol. 1829, pp. 84–97.

    CAS  PubMed  Google Scholar 

  103. Becker, D., Lutsik, P., Ebert, P., et al., BiQ Analyzer HiMod: an interactive software tool for high-throughput locus-specific analysis of 5-methylcytosine and its oxidized derivatives, Nucleic Acids Res., 2014, vol. 42, pp. W501–W507.

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Wang, Z., Zang, C., Rosenfeld, J.A., et al., Combinatorial patterns of histone acetylations and methylations in the human genome, Nat. Genet., 2008, vol. 40, pp. 897–903.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Yin, H., Sweeney, S., and Raha, D., A high-resolution whole-genome map of key chromatin modifications in the adult Drosophila melanogaster, PLoS Genet., 2011, vol. 7. e1002380

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Ha, M., Ng, D.W., Li, W.H., and Chen, Z.J., Coordinated histone modifications are associated with gene expression variation within and between species, Genome Res., 2011, vol. 21, pp. 590–598.

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Cheng, C. and Gerstein, M., Modeling the relative relationship of transcription factor binding and histone modifications to gene expression levels in mouse embryonic stem cells, Nucleic Acids Res., 2012, vol. 40, pp. 553–568.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. McLeay, R.C., Lesluyes, T., Cuellar Partida, G., and Bailey, T.L., Genome-wide in silico prediction of gene expression, Bioinformatics, 2012, vol. 28, pp. 2789–2796.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Dong, X., Greven, M.C., Kundaje, A., et al., Modeling gene expression using chromatin features in various cellular contexts, Genome Biol., 2012, vol. 13, p. R53.

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Kwasnieski, J.C., Fiore, C., Chaudhari, H.G., and Cohen, B.A., High-throughput functional testing of encode segmentation predictions, Genome Res., 2014, vol. 24, pp. 1595–1602.

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Cheng, C., Yan, K.K., Yip, K.Y., et al., A statistical framework for modeling gene expression using chromatin features and application to modENCODE datasets, Genome Biol., 2011, vol. 12, p. R15.

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Zhou, J. and Troyanskaya, O.G., Global quantitative modeling of chromatin factor interactions, PLoS Comput. Biol., 2014, vol. 10. e1003525

    PubMed Central  PubMed  Google Scholar 

  113. Zhang, C., Gao, S., Molascon, A.J., et al., Bioinformatic and proteomic analysis of bulk histones reveals PTM crosstalk and chromatin features, J. Proteome Res., 2014, vol. 13, pp. 3330–3337.

    CAS  PubMed  Google Scholar 

  114. Wang, Q., Huang, J., Sun, H., et al., CR cistrome: a ChIP-Seq database for chromatin regulators and histone modification linkages in human and mouse, Nucleic Acids Res., 2014, vol. 42, pp. D450–D458.

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Choukrallah, M.A. and Matthias, P., The interplay between chromatin and transcription factor networks during B cell development: who pulls the trigger first?, Front. Immunol., 2014, vol. 5, p. 156.

    PubMed Central  PubMed  Google Scholar 

  116. Drouin, J., Minireview: pioneer transcription factors in cell fate specification, Mol. Endocrinol., 2014, vol. 28, pp. 989–998.

    PubMed  Google Scholar 

  117. Sammons, M.A., Zhu, J., Drake, A.M., and Berger, S.L., TP53 engagement with the genome occurs in distinct local chromatin environments via pioneer factor activity, Genome Res., Accessed November 2014. doi 10.1101/gr.181883.114

    Google Scholar 

  118. Gévry, N., Hardy, S., Jacques, P.E., et al., Histone H2A.Z is essential for estrogen receptor signaling, Genes Dev., 2009, vol. 23, pp. 1522–1533.

    PubMed Central  PubMed  Google Scholar 

  119. Cho, E.J., RNA polymerase II carboxy-terminal domain with multiple connections, Exp. Mol. Med., 2007, vol. 39, pp. 247–254.

    CAS  PubMed  Google Scholar 

  120. Cusanovich, D.A., Pavlovic, B., Pritchard, J.K., and Gilad, Y., The functional consequences of variation in transcription factor binding, PLoS Genet., 2014, vol. 10. e1004226

    PubMed Central  PubMed  Google Scholar 

  121. Kasowski, M., Grubert, F., Heffelfinger, C., et al., Variation in transcription factor binding among humans, Science, 2010, vol. 328, pp. 232–235.

    PubMed Central  CAS  PubMed  Google Scholar 

  122. McVicker, G., van de Geijn, B., Degner, J.F., et al., Identification of genetic variants that affect histone modifications in human cells, Science, 2013, pp. 747–749.

    Google Scholar 

  123. Thurman, R.E., Rynes, E., Humbert, R., et al., The accessible chromatin landscape of the human genome, Nature, 2012, vol. 489, pp. 75–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Degner, J.F., Pai, A.A., Pique-Regi, R., et al., DNase I sensitivity QTLs are a major determinant of human expression variation, Nature, 2012, vol. 482, pp. 390–394.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Ignatieva, E.V., Levitsky, V.G., Yudin, N.S., et al., Genetic basis of olfactory cognition: extremely high level of DNA sequence polymorphism in promoter regions of the human olfactory receptor genes revealed using the 1000 genomes project dataset, Front. Psychol., 2014, vol. 5, p. 247.

    PubMed Central  PubMed  Google Scholar 

  126. Kolchanov, N.A., Merkulova, T.I., Ignatieva, E.V., et al., Combined experimental and computational approaches to study the regulatory elements in eukaryotic genes, Brief Bioinform., 2007, vol. 8, pp. 266–274.

    CAS  PubMed  Google Scholar 

  127. Merkulova, T.I., Oshchepkov, D.Y., Ignatieva, E.V., et al., Bioinformatical and experimental approaches to investigation of transcription factor binding sites in vertebrate genes, Biochemistry (Moscow), 2007, vol. 72, pp. 1187–1193.

    CAS  Google Scholar 

  128. Oshchepkov, D.Y., Vityaev, E.E., Grigorovich, D.A., et al., SITECON: a tool for detecting conservative conformational and physicochemical properties in transcription factor binding site alignments and for site recognition, Nucleic Acids Res., 2004, vol. 32, pp. W208–W212.

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Levitsky, V.G., Ignatieva, E.V., Ananko, E.A., et al., Effective transcription factor binding site prediction using a combination of optimization, a genetic algorithm and discriminant analysis to capture distant interactions, BMC Bioinformat., 2007, vol. 8, p. 481.

    Google Scholar 

  130. Bryzgalov, L.O., Antontseva, E.V., Matveeva, M.Y., et al., Detection of regulatory SNPs in human genome using ChIP-seq ENCODE data, PLoS One, 2013, vol. 8. e78833

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Ignatieva.

Additional information

Original Russian Text © E.V. Ignatieva, O.A. Podkolodnaya, Yu.L. Orlov, G.V. Vasiliev, N.A. Kolchanov, 2015, published in Genetika, 2015, Vol. 51, No. 4, pp. 409–429.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatieva, E.V., Podkolodnaya, O.A., Orlov, Y.L. et al. Regulatory genomics: Combined experimental and computational approaches. Russ J Genet 51, 334–352 (2015). https://doi.org/10.1134/S1022795415040067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795415040067

Keywords

Navigation