Skip to main content
Log in

Genotypic characteristics of Mycobacterium avium subsp. hominissuis strains

  • Genetics of Microorganisms
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Mycobacterium avium are typical environmental, non-tuberculosis microorganisms that occasionally cause mycobacteriosis, an infectious disease in wild and domestic animals, birds, and humans. Here, we report the results of the first study on the genetic diversity of the Russian population of M. avium. A total of 85 M. avium subsp. hominissuis (MAH) clinical strains were isolated from patients (including 30 HIV-positive individuals) with mycobacteriosis in St. Petersburg, 2008–2011. The identification of the microorganisms was carried out using biochemical tests and the PCR detection of the mobile elements IS901 and IS900, as well as of the polymorphism of restriction fragments of the hsp65 gene. The genetic diversity of the isolates was evaluated by VNTR typing based on eight variable-number tandem repeats (VNTRs) (292, X3, 25, 47, 3, 7, 10, and 32 [Thibault et al., 2007]). The MAH population studied was characterized by 15 VNTR types, including nine unique patterns and six clusters of isolates with identical eight-digit profiles. The largest clusters (22221128 and 24221128) included 45 (59.2%) and 15 (19.7%) isolates, respectively; the others contained 2–7 strains. The strains of the cluster 2533112’8 possessed a truncated TR10 locus (allele 2′). Taking into account the absence of the epidemiological links between the patients and the fact that the infection was presumably delivered from the environment, the high rate of clustering of MAH isolates can be explained by the low discriminatory power of the eight-locus VNTR-typing scheme (HGDI 0–0.61).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Falkinham, J.O. III, Norton, C.D., and Le Chevallier, M.W., Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare and other mycobacteria in drinking water distribution systems, Appl. Environ. Microbiol., 2001, vol. 67, no. 3, pp. 1225–1231.

    Article  PubMed  CAS  Google Scholar 

  2. George, K.L., Parker, B.C., Gruft, H., and Falkinham, J.O. III, Epidemiology of infection by nontuberculous mycobacteria: growth and survival in natural waters, Am. Rev. Respir. Dis., 1980, vol. 122, pp. 89–94.

    PubMed  CAS  Google Scholar 

  3. Ichiyama, S., Shimokata, K., and Tsukamura, M., The isolation of Mycobacterium avium complex from soil, water, and dusts, Microbiol. Immunol., 1988, vol. 32, no. 7, pp. 733–739.

    PubMed  CAS  Google Scholar 

  4. Moulin, G.C., Stottmeier, K.D., Pelletier, P.A., et al., Concentration of Mycobacterium avium by hospital hot water systems, JAMA, 1988, vol. 260, no. 11, pp. 1599–1601.

    Article  PubMed  Google Scholar 

  5. Taylor, R.H., Falkinham, J.O. III, Norton, C.D., and LeChevalier, M.W., Chlorine, chloramine, chlorine dioxide, and ozone susceptibility of Mycobacterium avium, Appl. Environ. Microbiol., 2000, vol. 66, pp. 1702–1705.

    Article  PubMed  CAS  Google Scholar 

  6. Otten, T.F. and Vasil’ev, A.V., Mikobakterioz, (Mycobacteriosis), St. Petersburg: Meditsinskaya Pressa, 2005.

    Google Scholar 

  7. Litvinov, V.I., Makarova, M.V., and Krasnova, M.A., Netuberkuleznye mikobakterii (Nontuberculosis Mycobacteria), Moscow: Mosk. Gor. Nauchno-Prakt. Tsentr Bor’by Tuberk., 2008.

    Google Scholar 

  8. Otten, T.F., Bakteriologicheskaya i biokhimicheskaya identifikatsiya mikobakterii: metodicheskie rekomendatsii (Bacteriological and Biochemical Identification of Bacteria: Methodical Recommendation), St. Petersburg, 1994.

    Google Scholar 

  9. Cayrou, C., Turenne, C., Behr, M.A., and Drancourt, M., Genotyping of Mycobacterium avium complex organisms using multispacer sequence typing, Microbiology, 2010, vol. 156, no. 3, pp. 687–694.

    Article  PubMed  CAS  Google Scholar 

  10. Turenne, C.Y., Wallace, R., and Behr, M.A., Mycobacterium avium in the postgenomic era, Clin. Microb. Rev., 2007, vol. 20, no. 2, pp. 205–229.

    Article  CAS  Google Scholar 

  11. Bartos, M., Hlozek, P., Svastova, P., et al., Identification of members of Mycobacterium avium species by Accu-Probes, serotyping, and single IS900, IS901, IS1245 and IS901-flanking region PCR with internal standards, J. Microbiol. Methods, 2006, vol. 64, pp. 333–345.

    Article  PubMed  CAS  Google Scholar 

  12. Chimara, E., Ferrazoli, L., Misuka Ueky, S.Y., et al., Reliable identification of mycobacterial species by PCR-restriction enzyme analysis (PRA)-hsp65 in a reference laboratory and elaboration of a sequence-based extended algorithm of PRA-hsp65 patterns, BMC Microbiol., 2008, vol. 8, p. 48. doi: 10.1186/1471-2180-8-48

    Article  PubMed  Google Scholar 

  13. Pavlik, I., Svastova, P., Bartl, J., et al., Relationship between IS901 in Mycobacterium avium complex strains isolated from birds, animals, humans, and the environment and virulence for poultry, Clin. Diagn. Lab. Immunol., 2000, vol. 7, pp. 212–217.

    PubMed  CAS  Google Scholar 

  14. Telenti, A., Marchesi, F., Balz, M., et al., Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis, J. Clin. Microbiol., 1993, vol. 31, pp. 175–178.

    PubMed  CAS  Google Scholar 

  15. Inagaki, T., Nishimori, K., Yagi, T., et al., Comparison of a variable-number tandem-repeat (VNTR) method for typing Mycobacterium avium with mycobacterial interspersed repetitive-unit-VNTR and IS1245 restriction fragment length polymorphism typing, J. Clin. Microbiol., 2009, vol. 47, no. 7, pp. 2156–2164.

    Article  PubMed  CAS  Google Scholar 

  16. Thibault, V.C., Grayon, M., Boschiroli, M., et al., New variable-number tandem-repeat markers for typing Mycobacterium avium subsp. paratuberculosis and M. avium strains: comparison with IS900 and IS1245 restriction fragment length polymorphism typing, J. Clin. Microbiol., 2007, vol. 45, no. 8, pp. 2404–2410.

    Article  PubMed  CAS  Google Scholar 

  17. Collins, D.M., Cavaignac, S., and de Lisle, G.W., Use of four DNA insertion sequences to characterize strains of the Mycobacterium avium complex isolated from animals, Mol. Cell. Probes, 1997, vol. 11, pp. 373–380.

    Article  PubMed  CAS  Google Scholar 

  18. Ellingson, J.L., Stabel, J.R., Bishai, W.R., et al., Evaluation of the accuracy and reproducibility of a practical PCR panel assay for rapid detection and differentiation of Mycobacterium avium subspecies, Mol. Cell. Probes, 2000, vol. 14, pp. 153–161.

    Article  PubMed  CAS  Google Scholar 

  19. van Embden, J., Cave, M., Crawford, J., et al., Strain identification on Mycobacterium tuberculosis by DNA fingerprinting: Recommendations for a standardized methodology, J. Clin. Microbiol., 1993, vol. 31, pp. 406–409.

    PubMed  Google Scholar 

  20. Hunter, P. and Gaston, M., Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity, J. Clin. Microbiol., 1988, vol. 26, no. 11, pp. 2465–2466.

    PubMed  CAS  Google Scholar 

  21. Ichikawa, K., Yagi, T., Moriyama, M., et al., Characterization of Mycobacterium avium clinical isolates in Japan using subspecies-specific insertion sequences, and identification of a new insertion sequence, ISMav6, J. Med. Microbiol., 2009, no. 58, pp. 945–950.

    Google Scholar 

  22. Möbius, P., Lentzsch, P., Moser, I., et al., Comparative macrorestriction and RFLP analysis of Mycobacterium avium subsp. avium and Mycobacterium avium subsp. hominissuis isolates from man, pig, and cattle, Vet. Microbiol., 2006, no. 117, pp. 284–291.

    Google Scholar 

  23. Ritacco, V., Kremer, K., Van der Laan, T., et al., Use of IS901 and IS1245 in RFLP typing of Mycobacterium avium complex: relatedness among serovar reference strains, human and animal isolates, Int. J. Tuberc. Lung. Dis., 1998, no. 2, pp. 242–251.

    Google Scholar 

  24. Iwamoto, T., Nakajima, C., Nishiuchi, Y., et al., Genetic diversity of Mycobacterium avium subsp. hominissuis strains isolated from humans, pigs, and human living environment, Infect. Genet. Evol., 2012, vol. 12, no. 4, pp. 846–852.

    Article  PubMed  Google Scholar 

  25. Pate, M., Kušar D., Zolnir-Dovč, M., and Ocepec, M., MIRU-VNTR typing of Mycobacterium avium in animals and humans: heterogeneity of Mycobacterium avium subsp. hominissuis versus homogeneity of Mycobacterium avium subsp. avium strains, Res. Vet. Sci., 2011, vol. 91, no. 3, pp. 376–381.

    Article  PubMed  CAS  Google Scholar 

  26. Radomski, N., Thibault, V.C., Karoui, C., et al., Determination of genotypic diversity of Mycobacterium avium subspecies from human and animal origins by mycobacterial interspersed repetitive unit-variablenumber tandem-repeat and IS1311 restriction fragment length polymorphism typing, J. Clin. Microbiol., 2010, vol. 48, no. 4, pp. 1026–1034.

    Article  PubMed  CAS  Google Scholar 

  27. Tirkkonen, T., Pakarinen, J., Rintala, E., et al., Comparison of variable-number tandem-repeat markers typing and IS1245 restriction fragment length polymorphism fingerprinting of Mycobacterium avium subsp. hominissuis from human and porcine origins, J. Acta Vet. Scand., 2010, vol. 52, no. 1, pp. 21–27.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Starkova.

Additional information

Original Russian Text © D.A. Starkova, T.F. Otten, I.V. Mokrousov, A.A. Vyazovaya, B.I. Vishnevsky, O.V. Narvskaya, 2013, published in Genetika, 2013, Vol. 49, No. 9, pp. 1048–1054.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starkova, D.A., Otten, T.F., Mokrousov, I.V. et al. Genotypic characteristics of Mycobacterium avium subsp. hominissuis strains. Russ J Genet 49, 909–914 (2013). https://doi.org/10.1134/S1022795413090093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795413090093

Keywords

Navigation