Skip to main content
Log in

Ameliorating imidacloprid induced oxidative stress by 24-epibrassinolide in Brassica juncea L.

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Pesticide toxicity causes oxidative stress to plants by generating reactive oxygen species (ROS). The aim of the present study was to observe the role of 24-epibrassinolide (24-EBL) in protection of Brassica juncea L. plants from oxidative stress caused by imidacloprid (IMI) pesticide. Generation of ROS, activities of antioxidative enzymes and chlorophyll contents were estimated using spectrophotometer, whereas organic acid contents were determined using gas chromatography-mass spectrometry (GC-MS). Statistical analysis of data revealed that 24-EBL significantly decreased ROS contents, accompanied by enhanced levels of shoot biomass, chlorophyll contents, organic acid contents and the activities of antioxidative enzymes in B. juncea plants under IMI toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

24-EBL:

24-epibrassinolide

APOX:

ascorbate peroxidase

BRs:

brassinosteroids

CAT:

catalase

DHAR:

dehydroascorbate reductase

GC-MS:

gas chromatographymass spectrometry

GPOX:

guaiacol peroxidase

IMI:

imidacloprid

MLR:

multiple linear regression

SOD:

superoxide dismutase

References

  1. Ko, A.Y., Rahman, M.M., El-Aty, A.M.A., Jang, J., Park, J.H., Cho, S.K., and Shim, J.H., Development of a simple extraction and oxidation procedure for the residue analysis of imidacloprid and its metabolites in lettuce using gas chromatography, Food Chem., 2014, vol. 148, pp. 402–409.

    Article  CAS  PubMed  Google Scholar 

  2. Sharma, I., Bhardwaj, R., and Pati, P.K., Exogenous application of 28-homobrassinolide modulates the dynamics of salt and pesticides induced stress responses in an elite rice variety Pusa Basmati-1, J. Plant Growth Regul., 2015, vol. 34, pp. 509–518.

    Article  CAS  Google Scholar 

  3. Zhou, Y., Xia, X., Yu, G., Wang, J., Wu, J., Wang, M., Yang, Y., Shi, K., Yu, Y., Chen, Z., Gan, J., and Yu, J., Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants, Sci. Rep., 2015, vol. 5, p. 9018. doi 10.1038/srep09018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xia, X.J., Huang, Y.Y., Wang, L., Huang, L.F., Yu, Y.L., Zhou, Y.H., and Yu, J.Q., Pesticides induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L., Pestic. Biochem. Physiol., 2006, vol. 86, pp. 42–48.

    Article  CAS  Google Scholar 

  5. Xia, X.J., Zhang, Y., Wu, J.X., Wang, J.T., Zhou, Y.H., Shi, K., Yu, Y.L., and Yu, J.Q., Brassinosteroids promote metabolism of pesticides in cucumber, J. Agric. Food Chem., 2009, vol. 57, pp. 8406–8413.

    Article  CAS  PubMed  Google Scholar 

  6. Krishna, P., Brassinosteroid-mediated stress responses, J. Plant Growth Regul., 2003, vol. 22, pp. 289–297.

    Article  CAS  PubMed  Google Scholar 

  7. Hayat, S., Hasan, S.A., Yusuf, M., Hayat, Q., and Ahmad, A., Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata, Environ. Exp. Bot., 2010, vol. 69, pp. 105–112.

    CAS  Google Scholar 

  8. Sharma, P., Kumar, A., and Bhardwaj, R., Plant steroidal hormone epibrassinolide regulates heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression, Environ. Exp. Bot., 2016, vol. 122, pp. 1–9.

    Article  Google Scholar 

  9. Timpa, J.D., Burke, J.J., Quisenberry, J.E., and Wendt, C.W., Effects of water stress on the organic acid and carbohydrate compositions of cotton plants, Plant Physiol., 1986, vol. 82, pp. 724–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ma, J.F., Role of organic acids in detoxification of aluminum in higher plants, Plant Cell Physiol., 2000, vol. 41, pp. 383–390.

    Article  CAS  PubMed  Google Scholar 

  11. Li, X.F., Ma, J.F., and Matsumoto, H., Pattern of aluminum-induced secretion of organic acids differs between rye and wheat, Plant Physiol., 2000, vol. 123, pp. 1537–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma, A., Kumar, V., Kohli, S.K., Thukral, A.K., and Bhardwaj, R., Phytochemicals in Brassica juncea L. seedlings under imidacloprid-epibrassinolide treatment using GC-MS, J. Chem. Pharm. Res., 2015, vol. 7, pp. 708–711.

    CAS  Google Scholar 

  13. Sharma, A., Kumar, V., Singh, R., Thukral, A.K., and Bhardwaj, R., 24-Epibrassinolide induces the synthesis of phytochemicals effected by imidacloprid pesticide stress in Brassica juncea L., J. Pharmacogn. Phytochem., 2015, vol. 4, pp. 60–64.

    Google Scholar 

  14. Sharma, A., Kumar, V., Bhardwaj, R., and Thukral, A.K., Seed pre-soaking with 24-epibrassinolide reduces the imidacloprid pesticide residues in green pods of Brassica juncea L., Toxicol. Environ. Chem., 2017, vol. 99, no. 1, pp. 95–103. doi 10.1080/02772248.2016.1146955

    Article  CAS  Google Scholar 

  15. Sharma, A., Kumar, V., Thukral, A.K., and Bhardwaj, R., Epibrassinolide-imidacloprid interaction enhances non-enzymatic antioxidants in Brassica juncea L., Ind. J. Plant Physiol., 2016, vol. 21, pp. 70–75. doi10.1007/s40502-016-0203-x

    Article  Google Scholar 

  16. Arnon, D.I., Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris, Plant Physiol., 1949, vol. 24, pp. 1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Patterson, B.D., MacRae, E.A., and Ferguson, I.B., Estimation of hydrogen peroxide in plants extracts using titanium (IV), Anal. Biochem., 1984, vol. 139, pp. 487–492.

    Article  CAS  PubMed  Google Scholar 

  18. Elstner, E.F. and Heupel, A., Inhibition of nitrite formation from hydroxyl ammonium chloride. A simple assay for superoxide dismutase, Anal. Biochem., 1976, vol. 70, pp. 616–620.

    Article  CAS  PubMed  Google Scholar 

  19. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, pp. 189–198.

    Article  CAS  PubMed  Google Scholar 

  20. Aebi, H., Catalase in vitro, Methods Enzymol., 1984, vol. 105, pp. 121–126.

    Article  CAS  PubMed  Google Scholar 

  21. Nakano, Y. and Asada, K., Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 1981, vol. 22, pp. 867–880.

    CAS  Google Scholar 

  22. Flohé, L. and Günzler, W.A., Assays of glutathione peroxidase, Methods Enzymol., 1984, vol. 105, pp. 114–121.

    Article  PubMed  Google Scholar 

  23. Dalton, D.A., Russell, S.A., Hanus, F.J., Pascoe, G.A., and Evans, H.J., Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules, Proc. Natl. Acad. Sci. USA, 1986, vol. 83, pp. 3811–3815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kono, Y., Generation of superoxide radical during autooxidation of hydroxylamine and an assay for superoxide dismutase, Arch. Biochem. Biophys., 1978, vol. 186, pp. 189–195.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, M.C., Wang, M.K., Chiu, C.Y., Huang, P.M., and King, H.B., Determination of low molecular weight dicarboxylic acids and organic functional groups in rhizosphere and bulk soils of Tsuga and Yushania in a temperate rain forest, Plant Soil, 2001, vol. 231, pp. 37–44.

    Article  CAS  Google Scholar 

  26. Pryor, W.A. and Stanley, J.P., Letter: A suggested mechanism for the production of malondialdehyde during the autoxidation of polyunsaturated fatty acids. Nonenzymatic production of prostaglandin endoperoxides during autoxidation, J. Org. Chem., 1975, vol. 40, pp. 3615–3617.

    Article  CAS  PubMed  Google Scholar 

  27. Hayat, S., Khalique, G., Wani, A.S., Alyemeni, M.N., and Ahmad, A., Protection of growth in response to 28-homobrassinolide under the stress of cadmium and salinity in wheat, Int. J. Biol. Macromol., 2014, vol. 64, pp. 130–136.

    Article  CAS  PubMed  Google Scholar 

  28. Fariduddin, Q., Yusuf, M., Ahmad, I., and Ahmad, M., Brassinosteroids and their role in response of plants to abiotic stresses, Biol. Plant., 2014, vol. 58, pp. 9–17.

    Article  CAS  Google Scholar 

  29. Lascano, H.R., Gomez, L.D., Casano, L.M., and Trippi, V.S., Changes in glutathione reductase activity and protein content in wheat leaves and chloroplasts exposed to photooxidative stress, Plant Physiol. Biochem., 1998, vol. 36, pp. 321–329.

    Article  CAS  Google Scholar 

  30. López-Bucio, J., Nieto-Jacobo, M.F., Ramírez-Rodríguez, V., and Herrera-Estrella, L., Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils, Plant Sci., 2000, vol. 160, pp. 1–13.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sharma.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Kumar, V., Kanwar, M.K. et al. Ameliorating imidacloprid induced oxidative stress by 24-epibrassinolide in Brassica juncea L.. Russ J Plant Physiol 64, 509–517 (2017). https://doi.org/10.1134/S1021443717040124

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443717040124

Keywords

Navigation