Skip to main content
Log in

Physiological role of nickel and its toxic effects on higher plants

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The focus of the review is on the specific aspects of nickel effect on plants as compared to other heavy metals; their specificity is derived from different physical and chemical properties. The various facets of the physiological role of nickel and its toxic activity in higher plants, its intracellular partition and transport in plant tissues and organ are discussed. The putative mechanisms of nickel hyperaccumulation are considered in several representatives of angiosperm plant families. The existing evidence was used to outline the metabolic changes in plants affected by nickel. The comparison with other heavy metals is used to disclose the general mechanisms that disturb plant mineral nutrition, water regime, photosynthesis, and morphogenesis as well as the common cell responses aimed at detoxification of heavy metals. The numerous nonspecific effects of heavy metals depend on their direct and indirect action; in addition, some effects of nickel are specific. To illustrate, high Ni content in endoderm and pericycle cells blocks cell divisions in the pericycle and results in the inhibition of root branching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Metal Ions in Biological Systems, Concepts on Metal Ion Toxicity, vol. 20, Singel, H. and Singel, A., Eds., New York: Marcel Dekker, 1986.

    Google Scholar 

  2. Eskew, D.L., Welch, R.M., and Cary, E.E., Nickel: An Essential Micronutrient for Legumes and Possibly All Higher Plants, Science, 1983, vol. 222, pp. 621–623.

    CAS  Google Scholar 

  3. Andreeva, I.V., Govorina, V.V., Vinogradova, S.B., and Yagodin, B.A., Nickel in Plants, Agrokhimiya, 2001, no. 3, pp. 82–94.

  4. Brown, P.H., Welch, R.M., and Cary, E.E., Nickel: A Micronutrient Essential for Higher Plants, Plant Physiol., 1987, vol. 85, pp. 801–803.

    CAS  Google Scholar 

  5. Dixon, N.E., Gazzola, C., Blakeley, R.L., and Zemer, B., Jack-Bean Urease (EC 3.5.1.5.3). A Metalloenzyme. A Simple Biological Role for Nickel, J. Am. Chem. Soc., 1975, vol. 97, pp. 4131–4133.

    CAS  PubMed  Google Scholar 

  6. Fishbein, W.N., Smith, M.J., Nagarajan, K., and Scurzi, W., The First Natural Nickel Metalloenzyme: Urease, Fed. Proc. Am. Soc. Exp. Biol., 1976, vol. 35, p. 1680.

    Google Scholar 

  7. Polacco, J.C., Freyermuth, S.K., Gerendas, J., and Cinzio, S., Soybean Genes Involved in Nickel Insertion into Urease, J. Exp. Bot., 1999, vol. 50, pp. 1149–1156.

    Article  CAS  Google Scholar 

  8. Sirko, A. and Brodzik, R., Plant Ureases: Roles and Regulation, Acta Biochim. Pol., 2000, vol. 47, pp. 1189–1195.

    CAS  PubMed  Google Scholar 

  9. Welch, R.M., The Biological Significance of Nickel, J. Plant Nutr., 1981, vol. 3, pp. 345–356.

    CAS  Google Scholar 

  10. Walker, C.D., Graham, R.D., Madison, J.T., Cary, E.E., and Welch, R.M., Effects of Ni Deficiency on Some Nitrogen Metabolites in Cowpeas (Vigna unguiculata L. Walp.), Plant Physiol., 1985, vol. 79, pp. 474–479.

    CAS  Google Scholar 

  11. Zonia, L.E., Stebbins, N.E., and Polacco, J.C., Essential Role of Urease in Germination of Nitrogen-Limited Arabidopsis thaliana Seeds, Plant Physiol., 1995, vol. 107, pp. 1097–1103.

    Article  CAS  PubMed  Google Scholar 

  12. Gerendas, J. and Sattelmacher, B., Significance of Ni Supply for Growth, Urease Activity and the Concentrations of Urea, A mino Acids and Mineral Nutrients of Urea-Grown Plants, Plant Soil, 1997, vol. 190, pp. 153–162.

    CAS  Google Scholar 

  13. Gerendas, J. and Sattelmacher, B., Influence of Ni Supply on Growth and Nitrogen Metabolism of Brassica napus L. Grown with NH4NO3 or Urea as N Source, Ann. Bot., 1999, vol. 83, pp. 65–71.

    CAS  Google Scholar 

  14. Hirai, M., Kawai-Hirai, R., Hirai, T., and Ueki, T., Structural Change of Jack Bean Urease Induced by Addition of Surfactants Studied with Synchrotron-Radiation Small-Angle X-Ray Scattering, Eur. J. Biochem., 1993, vol. 215, pp. 55–61.

    Article  CAS  PubMed  Google Scholar 

  15. Takishima, K., Suga, T., and Mamiya, G., The Structure of Jack Bean Urease. The Complete Amino Acid Sequence, Limited Proteolysis and Reactive Cysteine Residues, Eur. J. Biochem., 1988, vol. 175, pp. 151–165.

    CAS  PubMed  Google Scholar 

  16. Winkler, R.G., Polacco, J.C., Eskew, D.L., and Welch, R.M., Nickel Is Not Required for Apourease Synthesis in Soybean Seeds, Plant Physiol., 1983, vol. 72, pp. 262–263.

    CAS  Google Scholar 

  17. Dalton, D.A., Evans, H.J., and Hanus, F.J., Stimulation by Nickel of Soil Microbial Urease Activity and Urease and Hydrogenase Activities in Soybeans Grown in a Low-Nickel Soil, Plant Soil, 1985, vol. 88, pp. 245–258.

    Article  CAS  Google Scholar 

  18. Gerendas, J. and Sattelmacher, B., Significance of N Source (Urea vs. NH4NO3) and Ni Supply for Growth, Urease Activity and Nitrogen Metabolism of Zucchini (Cucurbita pepo convar. giromontiina), Plant Soil, 1997, vol. 196, pp. 217–222.

    CAS  Google Scholar 

  19. Krogmeier, M.J., McCarty, G.W., and Bremner, J.M., Phytotoxicity of Foliar-Applied Urea, Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 8189–8191.

    CAS  Google Scholar 

  20. Eskew, D.L., Welch, R.M., and Norvell, W.A., Nickel in Higher Plants: Further Evidence for an Essential Role, Plant Physiol., 1984, vol. 76, pp. 691–693.

    CAS  Google Scholar 

  21. Das, P.K., Kar, M., and Mishra, D., Nickel Nutrition of Plants: Effect of Nickel on Some Oxidase Activities during Rice (Oryza sativa L.) Seed Germination, Z. Pflanzenphysiol., 1978, vol. 90, pp. 225–233.

    CAS  Google Scholar 

  22. Orlov, D.S., Sadovnikova, L.K., and Lozanovskaya, I.N., Ekologiya i okhrana biosfery pri khimicheskom zagryaznenii (Ecology and Protection of Biosphere under Chemical Pollution), Moscow: Vysshaya Shkola, 2002.

    Google Scholar 

  23. Emsley, J., The Elements, Oxford: Clarendon, 1991.

    Google Scholar 

  24. Aschmann, S.G. and Zasoski, R.J., Nickel and Rubidium Uptake by Whole Oat Plants in Solution Culture, Physiol. Plant., 1987, vol. 71, pp. 191–196.

    CAS  Google Scholar 

  25. Temp, G.A., Nickel in Plants and Its Toxicity, Ustoichivost’ k tyazhelym metallam dikorastushchikh vidov (Resistance of Wild Species to Heavy Metals), Alekseeva-Popova, N.V. Ed., Leningrad: Lenuprizdat, 1991, pp. 139–146.

    Google Scholar 

  26. Sajwan, K.S., Ornes, W.H., Youngblood, T.V., and Alva, A.K., Uptake of Soil Applied Cadmium, Nickel and Selenium by Bush Beans, Water, Air, Soil Pollut., 1996, vol. 91, pp. 209–217.

    CAS  Google Scholar 

  27. Merkusheva, M.G., Ubugunov, V.L., and Lavrent’eva, I.N., Heavy Metals in Soil and Phytomass of Pastures in the West Transbaikal Region, Agrokhimiya, 2001, no. 8, pp. 63–72.

  28. Kukier, U., Peters, C.A., Chaney, R.L., Angle, J.S., and Roseberg, R.J., The Effect of pH on Metal Accumulation in Two Alyssum Species, J. Environ. Qual., 2004, vol. 33, pp. 2090–2102.

    CAS  PubMed  Google Scholar 

  29. Taylor, G.J. and Crowder, A.A., Uptake and Accumulation of Copper, Nickel, and Iron by Typha latifolia Grown in Solution Culture, Can. J. Bot., 1983, vol. 61, pp. 1825–1830.

    CAS  Google Scholar 

  30. Boyd, R.S. and Martens, S.N., Nickel Hyperaccumulation by Thlaspi montanum var. montanum (Brassicaceae): A Constitutive Trait, Am. J. Bot., 1998, vol. 85, pp. 259–265.

    CAS  Google Scholar 

  31. Gabbrielli, R. and Pandolfini, T., Effect of Mg2+ and Ca2+ on the Response to Nickel Toxicity in a Serpentine Endemic and Nickel-Accumulating Species, Physiol. Plant., 1984, vol. 62, pp. 540–544.

    CAS  Google Scholar 

  32. Ehlken, S. and Kirchner, G., Environmental Processes Affecting Plant Root Uptake of Radioactive Trace Elements and Variability of Transfer Factor Data: A Review, J. Environ. Rad., 2002, vol. 58, pp. 97–112.

    CAS  Google Scholar 

  33. Kochian, L.V., Molecular Physiology of Mineral Nutrient Acquisition, Transport, and Utilization, Biochemistry and Molecular Biology of Plants, Buchanan, B.B., Gruissem, W., and Jones, R.L., Eds., Rockville, 2000, pp. 1204–1249.

  34. Guerinot, M.L., Molecular Mechanisms of Ion Transport in Plant Cells, Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment, Raskin, I. and Ensley, B.D., Eds., New York: John Wiley and Sons, 2000, pp. 271–285.

    Google Scholar 

  35. Li, L., Tutone, A.F., Drummond, R.S.M., Gardner, R.C., and Luan, S., A Novel Family of Magnesium Transport Genes in Arabidopsis, Plant Cell, 2001, vol. 13, pp. 2761–2775.

    CAS  PubMed  Google Scholar 

  36. Seregin, I.V. and Ivanov, V.B., Physiological Aspects of Cadmium and Lead Toxic Effects on Higher Plants, Fiziol. Rast. (Moscow), 2001, vol. 48, pp. 606–630 (Russ. J. Plant Physiol., Engl. Transl., pp. 523–544).

    Google Scholar 

  37. Baker, A.J.M., Accumulators and Excluders-Strategies in Response of Plants to Heavy Metals, J. Plant Nutr., 1981, vol. 3, pp. 643–654.

    CAS  Google Scholar 

  38. Antosiewicz, D.M., Adaptation of Plants to an Environment Polluted with Heavy Metals, Byul. Izobr., 1992, vol. 61, pp. 281–299.

    CAS  Google Scholar 

  39. Brooks, R.R., Wither, E.D., and Zepemick, B., Cobalt and Nickel in Rinorea Species, Plant Soil, 1977, vol. 47, pp. 707–712.

    Article  CAS  Google Scholar 

  40. Phytoremediation of Toxic Metals Using Plants to Clean up the Environment, Raskin, I. and Ensley, B.D., Eds., New York: J. Wiley and Sons, 2000.

    Google Scholar 

  41. Reeves, R.D., Baker, A.J.M., Bornidi, A., and Berazain, R., Nickel Hyperaccumulation in the Serpentine Flora of Cuba, Ann. Bot., 1999, vol. 83, pp. 29–38.

    Article  CAS  Google Scholar 

  42. Brooks, R.R., Plants That Hyperaccumulate Heavy Metals (Their Role in Phytoremediation, Microbiology, Archaeology, Mineral Exploration and Phytomining), Wallingford: CAB, 1998.

    Google Scholar 

  43. Davis, M.A., Pritchard, S.G., Boyd, R.S., and Prior, S.A., Developmental and Induced Responses of Nickel-Based and Organic Defenses of the Nickel-Hyperaccumulating Shrub, Psychotria douarrei, New Phytol., 2001, vol. 150, pp. 49–58.

    CAS  Google Scholar 

  44. Severne, B.C., Nickel Accumulation by Hybanthus floribundus, Nature, 1974, vol. 248, pp. 807–808.

    Article  CAS  PubMed  Google Scholar 

  45. Sagner, S., Kneer, R., Wanner, G., Cosson, J.-P., Deus-Neumann, B., and Zenk, M.H., Hyperaccumulation, Complexation and Distribution of Nickel in Sebertia acuminata, Phytochemistry, 1998, vol. 47, pp. 339–343.

    CAS  PubMed  Google Scholar 

  46. Davis, M.A. and Boyd, R.S., Dynamics of Ni-Based Defense and Organic Defenses in the Ni Hyperaccumulator, Streptanthus polygaloides (Brassicaceae), New Phytol., 2000, vol. 146, pp. 211–217.

    Article  CAS  Google Scholar 

  47. Boyd, R.S., Shaw, J.J., and Martens, S.N., Nickel Hyperaccumulation Defends Streptanthus polygaloides (Brassicaceae) against Pathogens, Am. J. Bot., 1994, vol. 81, pp. 294–300.

    CAS  Google Scholar 

  48. Yang, X.E., Baligar, V.C., Foster, J.C., and Martens, D.C., Accumulation and Transport of Nickel in Relation to Organic Acids in Ryegrass and Maize Grown with Different Nickel Levels, Plant Soil, 1997, vol. 196, pp. 271–276.

    Article  CAS  Google Scholar 

  49. Seregin, I.V., Kozhevnikova, A.D., Kazyumina, E.M., and Ivanov, V.B., Nickel Toxicity and Distribution in Maize Roots, Fiziol. Rast. (Moscow), 2003, vol. 50, pp. 793–800 (Russ. J. Plant Physiol., Engl. Transl., pp. 711–718).

    Google Scholar 

  50. Kramer, U., Cotter-Howells, J.D., Charnock, J.M., Baker, A.J.M., and Smith, A.C., Free Histidine as a Metal Chelator in Plants That Accumulate Nickel, Lett. Nature, 1996, vol. 379, pp. 635–638.

    CAS  Google Scholar 

  51. Kramer, U., Smith, R.D., Wenzel, W.W., Raskin, I., and Salt, D.E., The Role of Metal Transport and Tolerance in Nickel Hyperaccumulation by Thlaspi goesingense Halacsy, Plant Physiol., 1997, vol. 115, pp. 1641–1650.

    CAS  PubMed  Google Scholar 

  52. Andreeva, I.V., Govorina, V.V., Yagodin, B.A., and Dosimova, O.T., Dynamics of Nickel Accumulation and Distribution in Oat Plants, Agrokhimiya, 2000, no. 4, pp. 68–71.

  53. Ewais, E.A., Effects of Cadmium, Nickel and Lead on Growth, Chlorophyll Content and Proteins of Weeds, Biol. Plant., 1997, vol. 39, pp. 403–410.

    Article  CAS  Google Scholar 

  54. Sresty, T.V.S. and Madhava Rao, K.V., Ultrastructural Alterations in Response to Zinc and Nickel Stress in the Root Cells of Pigeonpea, Environ. Exp. Bot., 1999, vol. 41, pp. 3–13.

    Article  CAS  Google Scholar 

  55. Stanković, Z., Pajević, S., Vučković, M., and Stojanović, S., Concentrations of Trace Metals in Dominant Aquatic Plants of the Lake Provala (Vojvodina, Yugoslavia), Biol. Plant., 2000, vol. 43, pp. 583–585.

    Google Scholar 

  56. Rubio, M.I., Escrig, I., Martinez-Cortina, C., Lopez-Benet, F.J., and Sanz, A., Cadmium and Nickel Accumulation in Rice Plants. Effects on Mineral Nutrition and Possible Interactions of Abscisic and Gibberellic Acids, Plant Growth Regul., 1994, vol. 14, pp. 151–157.

    Article  CAS  Google Scholar 

  57. Reeves, R.D., Brooks, R.R., and Macfarlane, R.M., Nickel Uptake by Californian Streptanthus and Caulanthus with Particular Reference to the Hyperaccumulator S. polygaloides Gray (Brassicaceae), Am. J. Bot., 1981, vol. 68, pp. 708–712.

    CAS  Google Scholar 

  58. Kovacević, G., Kastori, R., and Merkulov, L.J., Dry Matter and Leaf Structure in Young Wheat Plants as Affected by Cadmium, Lead, and Nickel, Biol. Plant., 1999, vol. 42, pp. 119–123.

    Google Scholar 

  59. Taylor, G.J. and Crowder, A.A., Copper and Nickel Tolerance in Typha latifolia Clones from Contaminated and Uncontaminated Environments, Can. J. Bot., 1984, vol. 62, pp. 1304–1308.

    CAS  Google Scholar 

  60. Heath, S.M., Southworth, D., and D’Allura, J.A., Localization of Nickel in Epidermal Subsidiary Cells of Leaves of Thlaspi montanum var siskiyouense (Brassicaceae) Using Energy-Dispersive X-Ray Microanalysis, Int. J. Plant Sci., 1997, vol. 158, pp. 184–188.

    Article  CAS  Google Scholar 

  61. Kupper, H., Lombi, E., Zhao, F.J., Wieshammer, G., and McGrath, S.P., Cellular Compartmentation of Nickel in the Hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense, J. Exp. Bot., 2001, vol. 52, pp. 2291–3000.

    Article  CAS  PubMed  Google Scholar 

  62. Nabais, C., Freitas, H., Hagemeyer, J., and Breckle, S.-W., Radial Distribution of Ni in Stem wood of Quercus ilex L. Trees Grown on Serpentine and Sandy Loam (Umbric Leptosol) Soils of NE-Portugal, Plant Soil, 1996, vol. 183, pp. 181–185.

    Article  CAS  Google Scholar 

  63. Psaras, G.K. and Manetas, Y., Nickel Localization in Seeds of the Metal Hyperaccumulator Thlaspi pindicum Hausskn., Ann. Bot., 2001, vol. 88, pp. 513–516.

    Article  CAS  Google Scholar 

  64. Broadhurst, C.L., Chaney, R.L., Angle, J.S., Maugel, T.K., Erbe, E.F., and Murphy, C.A., Simultaneous Hyperaccumulation of Nickel, Manganese, and Calcium in Alysum Leaf Trichomes, Environ. Sci. Technol., 2004, vol. 38, pp. 5797–5802.

    Article  CAS  PubMed  Google Scholar 

  65. Liu, D. and Kottke, I., Subcellular Localization of Chromium and Nickel in Root Cells of Allium cepa by EELS and ESI, Cell Biol. Toxicol., 2003, vol. 19, pp. 299–311.

    Article  CAS  PubMed  Google Scholar 

  66. Cataldo, D.A., McFadden, K.M., Garland, T.R., and Wildung, R.E., Organic Constituents and Complexation of Nickel (II), Iron (III), Cadmium (II) and Plutonium (IV) in Soybean Xylem Exudates, Plant Physiol., 1988, vol. 86, pp. 734–739.

    CAS  Google Scholar 

  67. Zeller, S. and Feller, U., Redistribution of Cobalt and Nickel in Detached Wheat Shoots: Effects of Steam-Girdling and of Cobalt and Nickel Supply, Biol. Plant., 1998, vol. 41, pp. 427–434.

    Article  CAS  Google Scholar 

  68. Lee, J., Reeves, R.D., Brooks, R.R., and Jaffre, T., Isolation and Identification of a Citrate-Complex of Nickel from Nickel-Accumulating Plants, Phytochemistry, 1977, vol. 16, pp. 1503–1505.

    CAS  Google Scholar 

  69. Kersten, W.J., Brooks, R.R., Reeves, R.D., and Jaffre, T., Nature of Nickel Complexes in Psychotria douarrei and Other Nickel-Accumulating Plants, Phytochemistry, 1980, vol. 19, pp. 1963–1965.

    Article  CAS  Google Scholar 

  70. Homer, F.A., Reeves, R.D., Brooks, R.R., and Baker, A.J.M., Characterization of the Nickel-Rich Extract from the Nickel Hyperaccumulator Dichapetalum gelonioides, Phytochemistry, 1991, vol. 30, pp. 2141–2145.

    Article  CAS  Google Scholar 

  71. Persans, M.W., Yan, X., Patnoe, J.M., Kramer, U., and Salt, D.E., Molecular Dissection of the Role of Histidine in Nickel Hyperaccumulation in Thlaspi goesingense (Halacsy), Plant Physiol., 1999, vol. 121, pp. 1117–1126.

    Article  CAS  PubMed  Google Scholar 

  72. Kerkeb, L. and Kramer, U., The Role of Free Histidine in Xylem Loading of Nickel in Alyssum lesbiacum and Brassica juncea, Plant Physiol., 2003, vol. 131, pp. 716–724.

    Article  CAS  PubMed  Google Scholar 

  73. Brooks, R.R., Shaw, S., and Marfil, A.A., The Chemical Form and Physiological Function of Nickel in Some Iberian Alyssum Species, Physiol. Plant., 1981, vol. 51, pp. 167–170.

    CAS  Google Scholar 

  74. Kramer, U., Pickering, I.J., Prince, R.C., Raskin, I., and Salt, D.E., Subcellular Localization and Speciation of Nickel in Hyperaccumulator and Non-Accumulator Thlaspi Species, Plant Physiol., 2000, vol. 122, pp. 1343–1353.

    Article  CAS  PubMed  Google Scholar 

  75. Rudakova, E.V., Karakis, K.D., and Sidorshina, E.I., The Role of Plant Cell Walls in Absorption and Accumulation of Metal Ions, Fiziol. Biokh. Kul’t. Rast., 1988, vol. 20, pp. 3–12.

    CAS  Google Scholar 

  76. Merce, A.L.R., Landaluze, J.S., Mangrich, A.S., Szpoganicz, B., and Sierakowski, M.R., Complexes of Arabinogalactan of Pereskia aculeate and Co2+, Cu2+, Mn2+, and Ni2+, Biores. Technol., 2001, vol. 76, pp. 29–37.

    CAS  Google Scholar 

  77. Persans, M.W., Nieman, K., and Salt, D.E., Functional Activity and Role of Cation-Efflux Family Members in Ni Hyperaccumulation in Thlaspi goesingense, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 9995–10000.

    Article  CAS  PubMed  Google Scholar 

  78. Salt, D.E. and Wagner, G.J., Cadmium Transport across Tonoplast of Vesicles from Oat Roots. Evidence for a Cd2+/H+ Antiport Activity, J. Biol. Chem., 1993, vol. 268, pp. 12297–12302.

    CAS  PubMed  Google Scholar 

  79. Gries, G.E. and Wagner, G.J., Association of Nickel versus Transport of Cadmium and Calcium in Tonoplast Vesicles of Oat Roots, Planta, 1998, vol. 204, pp. 390–396.

    Article  CAS  PubMed  Google Scholar 

  80. Chardonnens, A.N., van de Laar, T., Koevoets, P.L.M., Kuijper, L.D.J., and Verkleij, J.A.C., Some Notes on Vacuolar Compartmentalization of Cadmium Tolerance in Silene vulgaris, The Role of Vacuolar Compartmentalization in the Mechanism of Naturally Selected Zinc and Cadmium Tolerance, Chardonnens, A.N., Ed., Amsterdam: Vrije Univ., 1999, pp. 31–41.

    Google Scholar 

  81. Ingle, R.A., Fricker, M.D., and Smith, J.A.C., Evidence for Ni-Proton Antiport Activity at the Vacuolar Membrane of the Hyperaccumulator Alyssum lesbiacum, Proc. 9th New Phytol. Symp. Heavy Metals and Plants from Ecosystems to Biomolecules, Philadelphia: Univ. Philadelphia, 2002, p. 31.

    Google Scholar 

  82. Van Assche, F. and Glijsters, H., Effects of Metals on Enzyme Activity in Plants, Plant, Cell Environ., 1990, vol. 13, pp. 195–206.

    Google Scholar 

  83. Kositsin, A.V., Interaction of Metals and Enzymes, Ustoichivost’ k tyazhelym metallam dikorastushchikh vidov (Resistance of Wild Species to Heavy Metals), Alekseeva-Popova, N.V., Ed., Leningrad: Lenuprizdat, 1991, pp. 15–22.

    Google Scholar 

  84. Sheoran, I.S., Singal, H.R., and Singh, R., Effect of Cadmium and Nickel on Photosynthesis and the Enzymes of the Photosynthetic Carbon Reduction Cycle in Pigeonpea (Cajanus cajan L.), Photosynth. Res., 1990, vol. 23, pp. 345–351.

    Article  CAS  Google Scholar 

  85. Kevresan, S., Petrović, N., Popović, M., and Kandrac, J., Effect of Heavy Metals on Nitrate and Protein Metabolism in Sugar Beet, Biol. Plant., 1998, vol. 41, pp. 235–240.

    CAS  Google Scholar 

  86. Ros, R., Cooke, D.T., Burden, R.S., and James, C.S., Effects of the Herbicide MCPA, and the Heavy Metals, Cadmium and Nickel on the Lipid Composition, Mg2+-ATPase Activity and Fluidity of Plasma Membranes from Rice, Oryza sativa (cv. Bahia) Shoots, J. Exp. Bot., 1990, vol. 41, pp. 457–462.

    CAS  Google Scholar 

  87. El-Shintinawy, F., El-Ansary, A., Differential Effect of Cd2+ and Ni2+ on Amino Acid Metabolism in Soybean Seedlings, Biol. Plant., 2000, vol. 43, pp. 79–84.

    Article  CAS  Google Scholar 

  88. Schickler, H. and Caspi, H., Response of Antioxidative Enzymes to Nickel and Cadmium Stress in Hyperaccumulator Plants of Genus, Alyssum, Physiol. Plant., 1999, vol. 105, pp. 39–44.

    CAS  Google Scholar 

  89. Pandolfini, T., Gabbrielli, R., and Comparini, C., Nickel Toxicity and Peroxidase Activity in Seedlings of Triticum aestivum L., Plant Cell Environ., 1992, vol. 15, pp. 719–725.

    CAS  Google Scholar 

  90. Ivanov, V.B., Bystrova, E.I., and Seregin, I.V., Comparative Impacts of Heavy Metals on Root Growth as Related to Their Specificity and Selectivity, Fiziol. Rast. (Moscow), 2003, vol. 50, pp. 445–454 (Russ. J. Plant Physiol., Engl. Transl., pp. 398–406).

    Google Scholar 

  91. Ros, R., Morales, A., Segura, J., and Picazo, I., In Vivo and In Vitro Effects of Nickel and Cadmium on the Plasmalemma ATPase from Rice (Oryza sativa L.) Shoots and Roots, Plant Sci., 1992, vol. 83, pp. 1–6.

    Article  CAS  Google Scholar 

  92. Piccini, D.F. and Malavolta, E., Effect of Nickel on Two Common Bean Cultivars, J. Plant Nutr., 1992, vol. 15, pp. 2343–2350.

    CAS  Google Scholar 

  93. Khalid, B.Y. and Tinsley, J., Some Effects of Nickel Toxicity on Rye Grass, Plant Soil, 1980, vol. 55, pp. 139–144.

    Article  CAS  Google Scholar 

  94. Barsukova, V.S. and Gamzikova, O.I., Effects of Nickel Surplus on the Element Content in Wheat Varieties Contrasting in Ni Resistance, Agrokhimiya, 1999, no. 1, pp. 80–85.

  95. Bishnoi, N.R., Sheoran, I.S., and Singh, R., Influence of Cadmium and Nickel on Photosynthesis and Water Relations in Wheat Leaves of Different Insertion Level, Photosynthetica, 1993, vol. 28, pp. 473–479.

    CAS  Google Scholar 

  96. Molas, J., Changes in Morphological and Anatomical Structure of Cabbage (Brassica oleracea L.) Outer Leaves and in Ultrastructure of Their Chloroplasts Caused by an In Vitro Excess of Nickel, Photosynthetica, 1997, vol. 34, pp. 513–522.

    Article  CAS  Google Scholar 

  97. Breckle, S.-W., Growth under Stress: Heavy Metals, Plant Roots: The Hidden Half, Waisel, Y., Eshel, A., and Kafkafi, U., Eds., New York: Marcel Dekker, 1991, pp. 351–373.

    Google Scholar 

  98. Veeranjaneyulu, K. and Das, V.S.R., Intrachloroplast Localization of 65Zn and 63Ni in a Zn-Tolerant Plant, Ocimum basilicum Benth, J. Exp. Bot., 1982, vol. 33, pp. 1161–1165.

    Google Scholar 

  99. Mohanty, N., Vaas, I., and Demeter, S., Impairment of Photosystem 2 Activity at the Level of Secondary Quinone Electron Acceptor in Chloroplasts Treated with Cobalt, Nickel and Zinc Ions, Physiol. Plant., 1989, vol. 76, pp. 386–390.

    CAS  Google Scholar 

  100. Krupa, Z. and Baszynski, T., Some Aspects of Heavy Metals Toxicity towards Photosynthetic Apparatus — Direct and Indirect Effects on Light and Dark Reactions, Acta Physiol. Plant., 1995, vol. 17, pp. 177–190.

    CAS  Google Scholar 

  101. Maksymiec, W., Effect of Copper on Cellular Processes in Higher Plants, Photosynthetica, 1997, vol. 34, pp. 321–342.

    Article  CAS  Google Scholar 

  102. Malkin, R. and Niyogi, K., Photosynthesis, Biochemistry and Molecular Biology of Plants, Buchanan, B.B., Gruissem, W., and Jones, R.L., Eds., Rockville, 2000, pp. 568–628.

  103. Taylor, R.W. and Allinson, D.W., Influence of Lead, Cadmium, and Nickel on the Growth of Medicago sativa (L.), Plant Soil, 1981, vol. 60, pp. 223–236.

    CAS  Google Scholar 

  104. Wong, M.H. and Bradshaw, A.D., A Comparison of the Toxicity of Heavy Metals, Using Root Elongation of Rye Grass, Lolium perrene, New Phytol., 1982, vol. 91, pp. 255–261.

    CAS  Google Scholar 

  105. Wang, W., Root Elongation Method for Toxicity Testing of Organic and Inorganic Pollutants, Environ. Toxicol. Chem., 1987, vol. 6, pp. 409–414.

    CAS  Google Scholar 

  106. Samantaray, S., Rout, G.R., and Das, P., Tolerance of Rice to Nickel in Nutrient Solution, Biol. Plant., 1997, vol. 40, pp. 295–298.

    Article  CAS  Google Scholar 

  107. Neiboer, E. and Richardson, D.H.S., The Replacement of the Non-Descriptive Term “Heavy Metals” by a Biologically and Chemically Significant Classification of Metal Ions, Environ. Pollut., 1980, vol. 1, pp. 3–26.

    Google Scholar 

  108. Karataglis, S.S., McNeilly, T., and Bradshaw, A.D., Lead and Zink Tolerance of Agrostis capillaris L. and Festuca rubra L. across a Mine Pasture Boundary at Minera, North Wales, Phyton, 1986, vol. 26, pp. 65–72.

    CAS  Google Scholar 

  109. Ivanov, V.B., Root Growth Responses to Chemicals, Sov. Sci. Rev. Ser. D, 1994, pp. 1–70.

  110. Seregin, I.V. and Ivanov, V.B., Is the Endodermal Barrier the Only Factor Preventing the Inhibition of Root Branching by Heavy Metal Salts? Fiziol. Rast. (Moscow), 1997, vol. 44, pp. 922–925 (Russ. J. Plant Physiol., Engl. Transl., pp. 797–800).

    Google Scholar 

  111. Seregin, I.V. and Ivanov, V.B., The Transport of Cadmium and Lead Ions through Root Tissues, Fiziol. Rast. (Moscow), 1998, vol. 45, pp. 899–905 (Russ. J. Plant Physiol., Engl. Transl., pp. 780–785).

    Google Scholar 

  112. Seregin, I.V. and Kozhevnikova, A.D., Distribution of Cadmium, Lead, Nickel, and Strontium in Imbibing Maize Caryopses, Fiziol. Rast. (Moscow), 2005, vol. 52, pp. 635–640 (Russ. J. Plant Physiol., Engl. Transl., pp. 565–569).

    Google Scholar 

  113. Robertson, A.I. and Meakin, M.E.R., The Effect of Nickel on Cell Division and Growth of Brachystegia spiciformis Seedlings, J. Bot. Zimbabwe, 1980, vol. 12, pp. 115–125.

    Google Scholar 

  114. L’Huillier, L., d’Auzac, J., Durand, M., and Michaud-Ferriere, N., Nickel Effects on Two Maize (Zea mays) Cultivars: Growth, Structure, Ni Concentration, and Localization, Can. J. Bot., 1996, vol. 74, pp. 1547–1554.

    CAS  Google Scholar 

  115. Knasmuller, S., Gottmann, E., Steinkellner, H., Fomin, A., Pickl, C., Paschke, A., God, R., and Kundi, M., Detection of Genotoxic Effects of Heavy Metal Contaminated Soils with Plant Bioassays, Mutat. Res., 1998, vol. 420, pp. 37–48.

    CAS  PubMed  Google Scholar 

  116. Amosova, N.V., Tazina, I.A., and Synzynys, B.I., Effect of Phytotoxicity and Genotoxicity of Iron, Cobalt, and Nickel Ions on Physiological Parameters in plants of Different Species, S.-kh. Biol., 2003, no. 5, pp. 49–54.

  117. Demchenko, N.P., Kalimova, I.B., and Demchenko, K.N., Effect of Nickel on Growth, proliferation, and Differentiation of Root Cells in Triticum aestivum Seedlings, Fiziol. Rast. (Moscow), 2005, vol. 52, pp. 250–258 (Russ. J. Plant Physiol., Engl. Transl., pp. 220–228).

    Google Scholar 

  118. Liu, D., Jiang, W., Wang, W., and Zhai, L., Evaluation of Metal Ion Toxicity on Root Tip Cells by the Allium Test, Israel J. Plant Sci., 1995, vol. 43, pp. 125–133.

    CAS  Google Scholar 

  119. Rauser, W.E., Phytochelatins and Related Peptides: Structure, Biosynthesis and Function, Plant Physiol., 1995, vol. 109, pp. 1141–1149.

    CAS  PubMed  Google Scholar 

  120. Zenk, M.H., Heavy Metal Detoxification in Higher Plants — a Review, Gene, 1996, vol. 179, pp. 21–30.

    Article  CAS  PubMed  Google Scholar 

  121. Ernst, W.H.O., Effects of Heavy Metals in Plants at the Cellular and Organismic Level, Ecotoxicology. Ecological Fundamentals, Chemical Exposure and Biological Effects, Schuurmann, G. and Markert, B., Eds., Heidelberg: Wiley, 1998, pp. 587–620.

    Google Scholar 

  122. Cobbett, C.S., Phytochelatins and Their Roles in Heavy Metal Detoxification, Plant Physiol., 2000, vol. 123, pp. 825–832.

    Article  CAS  PubMed  Google Scholar 

  123. Seregin, I.V., Phytochelatins and Their Role in Cadmium Detoxification in Higher Plants (A Review), Usp. Biol. Khim., 2001, vol. 41, pp. 283–300.

    CAS  Google Scholar 

  124. Hall, J.L., Cellular Mechanisms for Heavy Metal Detoxification and Tolerance, J. Exp. Bot., 2002, vol. 53, pp. 1–11.

    Article  CAS  PubMed  Google Scholar 

  125. Schat, H., Llugany, M., Vooijs, R., Hartley-Whitaker, J., and Bleeker, P.M., The Role of Phytochelatins in Constitutive and Adaptive Heavy Metal Tolerances in Hyperaccumulator and Non-Hyperaccumulator Metallophytes, J. Exp. Bot., 2002, vol. 53, pp. 2381–2392.

    Article  CAS  PubMed  Google Scholar 

  126. Robinson, N.J., Tommey, A.M., Kuske, C., and Jackson, P.J., Plant Metallothioneins, Biochem. J., 1993, vol. 295, pp. 1–10.

    CAS  PubMed  Google Scholar 

  127. Zhou, J. and Goldsbrough, P.B., Structure, Organization and Expression of the Metallothionein Gene Family in Arabidopsis, Mol. Gen. Genet., 1995, vol. 248, pp. 318–328.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Seregin.

Additional information

Original Russian Text © I.V. Seregin, A.D. Kozhevnikova, 2006, published in Fiziologiya Rastenii, 2006, Vol. 53, No. 2, pp. 285–308.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seregin, I.V., Kozhevnikova, A.D. Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53, 257–277 (2006). https://doi.org/10.1134/S1021443706020178

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443706020178

Key words

Navigation