Skip to main content
Log in

Synthesis and properties of a monolithic gradient polymer material based on polyurethane structures and 1,4-butanediol as a chain extender

  • Structure and Properties
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Conditions of preparing monolithic gradient polymeric materials based on aliphatic polyether Laprol 5003 (Voranol 4711), 2,4-tolylene diisocyanate, and 1,4-butanediol as a chain extender have been studied. The materials have been synthesized on a semiautomatic lab molding machine that makes it possible to control the feed rate of precursors; therefore, the chemical structure of the material may be changed in the desired direction. As a consequence, the elastic modulus of the material changes along the sample length from 19 to 410 MPa; that is, the gradual transition from a low-modulus plastic to a rigid rubber occurs. The introduction of 1,4-butanediol improves the viability of precursors and thus hampers the occurrence of premature gelation and creates wide possibilities for obtaining both monolithic and composite reinforced gradient polymeric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Waite, H. C. Lichtenegger, G. D. Stucky, and P. Hansma, Biochemistry 43 (24), 7653 (2004).

    Article  CAS  Google Scholar 

  2. S. Suresh, Science 292, 2447 (2001).

    Article  CAS  Google Scholar 

  3. J. H. Waite, E. Vaccaro, C. Sun, and M. Lucas, Philos. Trans. R. Soc., B 357, 143 (2002).

    Article  CAS  Google Scholar 

  4. M. J. Harrington and J. H. Waite, Adv. Mater. 21, 440 (2009).

    Article  CAS  Google Scholar 

  5. B. Kieback, A. Neubrand, and H. Riedel, Mater. Sci. Eng., A 362, 81 (2003).

    Article  Google Scholar 

  6. G. C. Martin, E. Enssani, and M. Shen, J. Appl. Polym. Sci. 26 (5), 1465 (1981).

    Article  CAS  Google Scholar 

  7. C. L. Qin, W. M. Cai, J. Cai, D. Y. Tang, J. S. Zhang, and M. Qin, Mater. Chem. Phys. 85, 402 (2004).

    Article  CAS  Google Scholar 

  8. L. H. Sperling, Introduction to Physical Polymer Science (Wiley, Hoboken, 2001), p.363.

    Google Scholar 

  9. K. U. Claussen, T. Scheibel, H. W. Schmidt, and R. Giesa, Macromol. Mater. Eng. 297 (10), 938 (2012).

    Article  CAS  Google Scholar 

  10. K. U. Claussen, R. Giesa, T. Scheibel, and H. W. Schmidt, Macromol. Rapid Commun. 33 (3), 177 (2012).

    Article  Google Scholar 

  11. K. U. Claussen, M. Tebbe, R. Giesa, A. Schweikart, A. Fery, and H. W. Schmidt, RSC Adv., No. 10, 185 (2012).

    Google Scholar 

  12. K. U. Claussen, R. Giesa, and H. W. Schmidt, Polymer 55 (1), 29 (2014).

    Article  CAS  Google Scholar 

  13. E. S. Afanas’ev, M. D. Petunova, L. M. Goleneva, A. A. Askadskii, T. P. Klimova, and T. A. Babushkina, Polym. Sci., Ser. A 52 (12), 1318 (2010).

    Article  Google Scholar 

  14. A. A. Askadskii, L. M. Goleneva, M. D. Petunova, and E. S. Afanas’ev, RF Patent No. 021014 (2015).

    Google Scholar 

  15. L. M. Goleneva and A. A. Askadskii, Polym. Sci., Ser. C 51 (7), 26 (2009).

    Article  Google Scholar 

  16. P. Wright and A. P. C. Cumming, Solid Rolyurethane Elastomers (Maclaren and Sons, London, 1969).

    Google Scholar 

  17. L. A. Kazitsyna and N. B. Kupletskaya, Application of UV, IR, Nad NMR spectroscopy (Vysshaya shkola, Moscow, 1971) [in Russian].

    Google Scholar 

  18. A. A. Askadskii, L. M. Goleneva, E. S. Afanas’ev, and M. D. Petunova, Rev._J. Chem. 2, 105 (2012).

    Google Scholar 

  19. A. A. Askadskii, L. M. Goleneva, E. S. Afanas’ev, and M. D. Petunova, Rev._J. Chem. 2, 263 (2012).

    Google Scholar 

  20. R. Merten, D. Braun, and G. Laurer, Kunststoffe 55 (4), 249 (1965).

    CAS  Google Scholar 

  21. Yu. Yu. Kercha, Polyurethane Physical Chemistry (Naukova dumka, Kiev, 1979) [in Russian].

    Google Scholar 

  22. A. A. Askadskii, L. M. Goleneva, K. A. Bychko, and O. V. Afonicheva, Polym. Sci., Ser. A 50 (7), 1209 (2008).

    Article  CAS  Google Scholar 

  23. A. Ya. Malkin, A. A. Askadskii, and V. V. Kovriga, Measurement Methods of Polymer Mechanical Properties (Khimiya, Moscow, 1978) [in Russian].

    Google Scholar 

  24. A. A. Askadskii, Computational Materials Science of Polymers (Cambridge Int. Sci. Publ., Cambridge, 2003).

    Google Scholar 

  25. A. A. Askadskii and V. I. Kondrashchenko, Computational Modeling of Polymers (Nauchnyi mir, Moscow, 1999) [in Russian].

    Google Scholar 

  26. A. A. Askadskii and A. R. Khokhlov, Introduction into Physicochemistry of Polymers (Nauchnyi mir, Moscow, 2009) [in Russian].

    Google Scholar 

  27. A. A. Askadskii, M. N. Popova, and V. I. Kondrashchenko, Physicochemistry of Polymer Materials and Investigation Methods (Izd-vo ASV, Moscow, 2015) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Askadskii.

Additional information

Original Russian Text © E.S. Afanasyev, L.M. Goleneva, T.A. Matseevich, A.A. Askadskii, 2017, published in Vysokomolekulyarnye Soedineniya, Seriya A, 2017, Vol. 59, No. 1, pp. 14–27.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanasyev, E.S., Goleneva, L.M., Matseevich, T.A. et al. Synthesis and properties of a monolithic gradient polymer material based on polyurethane structures and 1,4-butanediol as a chain extender. Polym. Sci. Ser. A 59, 12–26 (2017). https://doi.org/10.1134/S0965545X17010011

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X17010011

Navigation