Skip to main content
Log in

Electrostatic-interaction-induced phase separation in solutions of flexible-chain polyelectrolytes

  • Theory and Simulation
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

An Erratum to this article was published on 27 May 2015

Abstract

A model of a polyelectrolyte solution has been formulated on the basis of the formalism of the thermodynamic perturbation theory. Macromolecules have been described in terms of the model of a flexible chain with an excluded volume and a variable electrical charge. During construction of the thermodynamic perturbation theory, a set of three independent subsystems—polyelectrolyte macromolecules placed in a structureless charge background of counterions, counterions placed in a structureless charge background of macromolecules, and Coulomb gas ions of a low-molecular-mass salt—has been taken as the reference system. In the framework of this model, liquid-liquid phase separation due to strong correlation-induced attraction has been predicted. The behavior of the degree of ionization over a wide monomer concentration range, including the region of phase separation either in a salt-free solution or in the presence of univalent ions of a low-molecular-mass salt in the solution, has been studied. It has been shown that macromolecules in the coexisting phases should have different degrees of ionization. The occurrence of phase separation under normal conditions in the case when dimethylformamide is taken as a solvent and the nonoccurrence of this phase separation in the case of aqueous solutions of flexible-chain polyelectrolytes are predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. H. Fredrickson, The Eguilibrium Theory of Inhomogenous Polymers (Clarendon, Oxford, 2005).

    Book  Google Scholar 

  2. A. V. Dobrynin and M. Rubinstein, Prog. Polym. Sci. 30, 1049 (2005).

    Article  CAS  Google Scholar 

  3. A. V. Dobrynin, Curr. Opin. Colloid Interface Sci. 13, 376 (2008).

    Article  CAS  Google Scholar 

  4. C. Holm, J. F. Joanny, K. Kremer, R. R. Netz, P. Reineker, C. Seidel, T. A. Vilgis, and R. G. Winkler, Adv. Polym. Sci. 66, 67 (2004).

    Google Scholar 

  5. Y. Levin, Rep. Prog. Phys. 65, 1577 (2002).

    Article  CAS  Google Scholar 

  6. A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989; AIP, New York, 1994).

    Google Scholar 

  7. P.-G. De Gennes, (Cornell Univ. Press, 1979).

  8. V. Yu. Borue and I. Ya. Erukhimovich, Macromolecules 21, 3240 (1988).

    Article  Google Scholar 

  9. J. F. Joanny and L. J. Leibler, J. Phys. (Paris) 51, 545 (1990).

    Article  CAS  Google Scholar 

  10. A. R. Khohlov and I. A. Nyrkova, Macromolecules 25, 1493 (1992).

    Article  Google Scholar 

  11. M. Gottschalk, P. Linse, and L. Piculell, Macromolecules 31, 8407 (1998).

    Article  CAS  Google Scholar 

  12. E. Yu. Kramarenko, I. Ya. Erukhimovich, and A. R. Khohlov, Macromol. Theory Simul. 11, 462 (2002).

    Article  CAS  Google Scholar 

  13. P. B. J. Warren, J. Phys. (Paris) 7, 343 (1997).

    CAS  Google Scholar 

  14. K. A. Mahdi and M. Olvera De la Cruz, Macromolecules 33, 7649 (2000).

    Article  CAS  Google Scholar 

  15. G. Orkoulas, S. K. Kumar, and A. J. Panagiotopoulos, Phys. Rev. Lett. 90, 048303-1 (2003).

    Article  Google Scholar 

  16. A. V. Ermoshkin and M. Olvera de la Cruz, Macromolecules 36, 7824 (2003).

    Article  CAS  Google Scholar 

  17. N. V. Brilliantov, Contrib. Plasma Phys. 38, 489 (1998).

    Article  CAS  Google Scholar 

  18. N. V. Brilliantov, V. V. Malinin, and R. R. Netz, Eur. Phys. J. D 18, 339 (2002).

    CAS  Google Scholar 

  19. N. V. Brilliantov, D. V. Kuznetzov, and R. Klein, Phys. Rev. Lett. 81, 1433 (1998).

    Article  CAS  Google Scholar 

  20. A. V. Ermoshkin and M. Olvera de la Cruz, Phys. Rev. Lett. 90, 125504-1 (2003).

    Article  Google Scholar 

  21. M. Muthukumar, Macromolecules 35, 9142 (2002).

    Article  CAS  Google Scholar 

  22. C.-L. Lee and M. J. Muthukumar, Chem. Phys. 130, 024904 (2009).

    Google Scholar 

  23. J. W. Jiang, L. Blum, O. Bernard, and J. M. Prausnitz, Mol. Phys. 99, 1121 (2001).

    Article  CAS  Google Scholar 

  24. J.-L. Barrat and J.-P. Hansen, Basic Concepts for Simple and Complex Fluids (Cambridge Univ. Press, Cambridge, 2003).

    Book  Google Scholar 

  25. J. P. Hansen and I. R. Donald, Theory of Simple Liquids (Academic, London, 1976).

    Google Scholar 

  26. I. R. Yukhnovskii and M. F. Golovko, Statistical Theory of Classical Equilibrium Systems (Naukova Dumka, Kiev, 1980) [in Russian].

    Google Scholar 

  27. S. F. Edwards, Proc. Phys. Soc. 85, 613 (1965).

    Article  CAS  Google Scholar 

  28. N. V. Brilliantov, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 48, 4536 (1993).

    Article  CAS  Google Scholar 

  29. M. Muthukumar, J. Chem. Phys. 120, 9343 (2004).

    Article  CAS  Google Scholar 

  30. J. Hubbard and P. Schofield, Phys. Lett. A 40, 245 (1972).

    Article  Google Scholar 

  31. M. Muthukumar and S. F. Edwards, J. Chem. Phys. 76, 265 (1982).

    Article  Google Scholar 

  32. A. Nikoubashman, J. P. Hansen, and G. J. Kahl, Chem. Phys. 137, 094905 (2012).

    Google Scholar 

  33. W. B. Warren and A. J. Masters, J. Chem. Phys. 138, 074901 (2013).

    Article  Google Scholar 

  34. Yu. A. Budkov, A. I. Frolov, M. G. Kiselev, and N. V. Brilliantov, J. Chem. Phys. 139, 194901 (2013).

    Article  Google Scholar 

  35. R. J. Kubo, J. Phys. Soc. Jpn. 17, 1100 (1962).

    Article  Google Scholar 

  36. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon, Oxford, 1989).

    Google Scholar 

  37. A. Levy, D. Andelman, and H. Orland, Phys. Rev. Lett. 108, 227801 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Budkov.

Additional information

Original Russian Text © Yu.A. Budkov, A.L. Kolesnikov, E.A. Nogovitsyn, M.G. Kiselev, 2014, published in Vysokomolekulyarnye Soedineniya. Ser. A, 2014, Vol. 56, No. 5, pp. 559–574.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budkov, Y.A., Kolesnikov, A.L., Nogovitsyn, E.A. et al. Electrostatic-interaction-induced phase separation in solutions of flexible-chain polyelectrolytes. Polym. Sci. Ser. A 56, 697–711 (2014). https://doi.org/10.1134/S0965545X14050022

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X14050022

Keywords

Navigation