Skip to main content
Log in

Effect of fullerene C60 branching center on the conformational properties of arms and the structure of star-shaped polystyrenes in solutions

  • Solutions
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The effect of the fullerene C60 branching center on the structure and conformation of star-shaped polystyrenes with different arm lengths at equal concentrations in deuterotoluene (c = 1 g/dL) is studied by the method of small-angle neutron scattering. The analysis of neutron scattering for linear PS precursors and stars (the molecular masses of arms are ∼7 × 103 and ∼4 × 104) shows that the stars have ∼6 arms that form a dense excluded-volume zone around a core inaccessible to other macromolecules. In low-molecular-mass stars (the molecular mass of the arm is ∼7 × 103), strengthening of the static rigidity of arms is observed; as a result, the size of arms increases relative to the size of free PS chains in a good solvent. At a greater length of arms (M ∼ 4 × 104), their individual properties are weakly pronounced in the correlation spectrum of the arm because of the interpenetration of arms, thereby demonstrating similarity in the structures of stars and their linear analogs. The mechanism controlling the effect of fullerene C60 on the conformations of stars via solvent structuring by fullerene is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Janot, H. Eddaoudi, P. Seta, Y. Ederle, and C. Mathis, Chem. Phys. Lett. 302, 103 (1999).

    Article  CAS  Google Scholar 

  2. E. Koudoumas, M. Konstantaki, A. Mavromanolakis, S. Couris, Y. Ederle, C. Mathis, P. Seta, and S. Leach, Chem. Phys. Lett. 335, 533 (2001).

    Article  CAS  Google Scholar 

  3. J. Venturini, E. Koudoumas, S. Couris, J. M. Janot, P. Seta, C. Mathis, and S. Leach, J. Math. Chem. 12, 2071 (2002).

    Article  CAS  Google Scholar 

  4. Ch. Wang, Sh. Fu, K. Yiang, H. Chen, and M. Wang, Macromol. Chem. Phys. 197, 3783 (1996).

    Article  CAS  Google Scholar 

  5. T.-W. Lee, O. Park, J. Kim, and Y. Ch. Kim, Chem. Mater. 14, 4281 (2002).

    Article  CAS  Google Scholar 

  6. B. Francois, Y. Ederle, and C. Mathis, Synth. Met. 103, 2362 (1999).

    Article  CAS  Google Scholar 

  7. L. V. Vinogradova, G. A. Polotskaya, A. Yu. Alent’ev, and A. A. Shevtsova, Polymer Science, Ser. A 51, 209 (2009).

    Article  Google Scholar 

  8. P. N. Lavrenko and L. V. Vinogradova, Polymer Science, Ser. A 42, 726 (2000).

    Google Scholar 

  9. A. P. Filippov, O. A. Romanova, and L. V. Vinogradova, Polymer Science, Ser. A 52, 221 (2010).

    Article  Google Scholar 

  10. V. Weber, M. Duval, Y. Ederle, and C. Mathis, Carbon 36, 839 (1998).

    Article  CAS  Google Scholar 

  11. N. P. Evlampieva, L. V. Vinogradova, and E. I. Ryumtsev, Vysokomol. Soedin., Ser. A 48, 106 (2006).

    Google Scholar 

  12. N. Yevlampieva, P. Khliabich, L. Vinogradova, P. Lavrenko, and E. Rjumtsev, Fullerenes, Nanotubes, Carbon Nanostruct. 16, 659 (2008).

    Article  CAS  Google Scholar 

  13. M. Daoud and J. P. Cotton, J. Phys. 43, 531 (1982).

    Article  CAS  Google Scholar 

  14. T. M. Birshtein and E. B. Zhulina, Polymer 25, 1453 (1984).

    Article  CAS  Google Scholar 

  15. R. S. Ruoff, R. Malhota, D. L. Huestis, D. S. Tse, and D. C. Lorents, Nature (London) 362, 140 (1993).

    Article  CAS  Google Scholar 

  16. R. S. Ruoff, D. S. Tse, R. Malhota, and D. C. Lorents, J. Phys. Chem. 97, 3379 (1993).

    Article  CAS  Google Scholar 

  17. B. M. Ginzburg and Sh. Tuichiev, J. Macromol. Sci. B 44, 517 (2005).

    Article  CAS  Google Scholar 

  18. B. M. Ginzburg, Sh. Tuichiev, and S. Kh. Tabarov, Pis’ma Zh. Tekh. Fiz. 33(15), 22 (2007).

    Google Scholar 

  19. B. M. Ginzburg and Sh. Tuichiev, Zh. Prikl. Khim. (S.-Peterburg) 81, 580 (2008).

    Google Scholar 

  20. B. M. Ginzburg, Sh. Tuichiev, and S. Kh. Tabarov, Zh. Prikl. Khim. (S.-Peterburg) 81, 1027 (2008).

    Google Scholar 

  21. B. M. Ginzburg and Sh. Tuichiev, Zh. Prikl. Khim. (S.-Peterburg) 82, 1062 (2008).

    Google Scholar 

  22. B. M. Ginzburg and Sh. Tuichiev, Kristallografiya 53, 661 (2008).

    Google Scholar 

  23. H. L. Wagner, J. Phys. Chem. Ref. Data 14, 1101 (1985).

    Article  CAS  Google Scholar 

  24. D. V. Konarev and R. N. Lyubovskaya, Usp. Khim. 68, 23 (1999).

    Article  Google Scholar 

  25. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science (Washington, D. C.) 258, 1474 (1992).

    Article  CAS  Google Scholar 

  26. R. J. Sension, A. Z. Szarka, G. R. Smith, and R. M. Hochstrasser, Chem. Phys. Lett. 185, 179 (1991).

    Article  CAS  Google Scholar 

  27. B. M. Ginzburg and Sh. Tuichiev, Zh. Prikl. Khim. (S.-Peterburg) 82, 1082 (2009).

    Google Scholar 

  28. A. N. Aleshin, Yu. F. Biryulin, L. V. Vinogradova, V. N. Zgonnik, T. L. Makarova, E. Yu. Melenevskaya, N. B. Mironkov, and V. P. Mikheev, Pis’ma Zh. Tekh. Fiz. 21(23), 64 (1995).

    CAS  Google Scholar 

  29. Y. Wang, Nature (London) 356, 585 (1992).

    Article  CAS  Google Scholar 

  30. V. T. Lebedev, L. V. Vinogradova, and Gy. Török, Polymer Science, Ser. A 50, 1090 (2008).

    Article  Google Scholar 

  31. V. T. Lebedev, Gy. Török, and L. V. Vinogradova, Polymer Science, Ser. A 53, 537 (2011).

    Article  CAS  Google Scholar 

  32. Y. Ederle and C. Mathis, Macromolecules 30, 2546 (1997).

    Article  CAS  Google Scholar 

  33. E. Yu. Melenevskaya, L. V. Vinogradova, L. S. Litvinova, E. E. Kever, L. A. Shibaev, T. A. Antonova, E. N. Bykova, S. I. Klenin, and V. N. Zgonnik, Polymer Science, Ser. A 40, 115 (1998).

    Google Scholar 

  34. V. T. Lebedev, Gy. Török, and L. V. Vinogradova, Polymer Science, Ser. A (in press).

  35. A. Guinier and G. Fournet, Small-Angle Scattering of X-Rays (Wiley, New York, 1955).

    Google Scholar 

  36. D. I. Svergun and L. A. Feigin, Small-Angle X-Ray and Neutron Scattering (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  37. A. E. Nesterov and Yu. S. Lipatov, Thermodynamics of Polymer Solutions and Blends (Naukova Dumka, Kiev, 1984), Vol. 1 [in Russian].

    Google Scholar 

  38. G. S. Grest, L. J. Fetters, J. S. Huang, and D. Richter, Adv. Chem. Phys. 94, 67 (1996).

    Article  CAS  Google Scholar 

  39. C. Picot, F. Audouin, and C. Mathis, Macromolecules 40, 1643 (2007).

    Article  CAS  Google Scholar 

  40. H. C. Benoit, J. Polym. Sci., Part C 11, 507 (1953).

    CAS  Google Scholar 

  41. E. V. Chubarova and E. Yu. Melenevskaya, J. Macromol. Sci., Phys. 49, 174 (2010).

    Article  CAS  Google Scholar 

  42. E. V. Chubarova and E. Yu. Melenevskaya, Fullerenes, Nanotubes, Carbon Nanostruct. 16, 640 (2008).

    Article  CAS  Google Scholar 

  43. M. Rawiso, J. Phys. IV 9, 174 (1999).

    Google Scholar 

  44. C. M. Marques, D. Izzo, T. Charitat, and E. Mendes, Eur. Phys. J. B 3, 353 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. T. Lebedev.

Additional information

Original Russian Text © V.T. Lebedev, Gy. Török, L.V. Vinogradova, 2013, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2013, Vol. 55, No. 2, pp. 131–140.

This work was supported by the Russian Foundation for Basic Research, project no. 10-03-00191a.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, V.T., Török, G. & Vinogradova, L.V. Effect of fullerene C60 branching center on the conformational properties of arms and the structure of star-shaped polystyrenes in solutions. Polym. Sci. Ser. A 55, 65–74 (2013). https://doi.org/10.1134/S0965545X13020053

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X13020053

Keywords

Navigation